
Words2Contact: Identifying

Support Contacts from Verbal Instructions Using Foundation Models

Dionis Totsila, Quentin Rouxel, Jean-Baptiste Mouret, Serena Ivaldi

Abstract— This paper presents Words2Contact, a language-
guided multi-contact placement pipeline leveraging large
language models and vision language models. Our method
is a key component for language-assisted teleoperation and
human-robot cooperation, where human operators can instruct
the robots where to place their support contacts before
whole-body reaching or manipulation using natural language.
Words2Contact transforms the verbal instructions of a human
operator into contact placement predictions; it also deals with
iterative corrections, until the human is satisfied with the contact
location identified in the robot’s field of view. We benchmark
state-of-the-art LLMs and VLMs for size and performance
in contact prediction. We demonstrate the effectiveness of the
iterative correction process, showing that users, even naive,
quickly learn how to instruct the system to obtain accurate
locations. Finally, we validate Words2Contact in real-world
experiments with the Talos humanoid robot, instructed by
human operators to place support contacts on different locations
and surfaces to avoid falling when reaching for distant objects.

I. INTRODUCTION

Humanoid robots can use various body parts to create

support contacts to help balance when reaching for difficult

positions. For example, they can use their right hand as a

support on a table, bend forward and reach a cup that would

otherwise be out of reach (Fig. 1); or they can lean on the

counter with their left hand to reach for a dish in the bottom

rack of a dishwasher to prevent falling. Solving these tasks

autonomously is usually done with multi-contact whole-body

planners and controllers [1, 2].

Recent advances in whole-body control using quadratic

programming have shown that both torque-controlled robots

[3] and position-controlled robots with force/torque sensors

[4] can effectively utilize additional contact points to increase

their manipulability and improve their balance, but these

control methods require the prior knowledge of the contact

locations. This information is usually the output of a contact

planning algorithm, where typically a planner decides a

sequence of contact locations that enable the robot to solve

its task (e.g., walking, manipulating a complex object) [5].

Contacts computation usually relies on visual or 3D percep-

tion and environment models to look first for suitable contact

surfaces, before deciding whether they are kinematically

feasible for the robot. For example, it is common to look

for flat areas to place the footsteps in humanoid walking [6].

This research was supported by the CPER CyberEntreprises, the
Creativ’Lab platform of Inria/LORIA, the EU Horizon project euROBIN
(GA n.101070596), the France 2030 program through the PEPR O2R
projects AS3 and PI3 (ANR-22-EXOD-007, ANR-22-EXOD-004).

All authors are affiliated with Inria, Université de Lorraine, CNRS, Loria,
F-54000. Contacts: firstname.lastname@inria.fr

LLM

VLMs

Multi-Contact
WBC

“Place your right hand on top

of the book.”

Joint Position Commands

θcmd

RGB-D

Natural

Language

2

1

“Reach for the red cup.”
2

1

Words2Contact

Fig. 1: Talos executes the user’s verbal instructions to (1)

lean on a book and (2) reach for an inaccessible cup, yet

in its field of view, using our Words2Contact pipeline.

Unfortunately, selecting contacts, especially when applying

forces, often requires an understanding of the world that

can hardly be modeled. Some surfaces might be flat, but

too fragile for support, like a glass window. Other surfaces

might be off-limits for safety reasons, like the wing of an

aircraft, or they might be slippery, dirty, or unstable. Overall,

in many real-world situations, the choice of support contacts

is likely to require human expertise at some point to be

deployed outside of a laboratory. Giving the power to human

experts to guide the robot and choose the contact locations

for them is therefore a very desirable feature.

Human guidance in contact selection is ideal for

teleoperated robots in remote maintenance or hazardous

scenarios and for collaborative robots cooperating and

working side-by-side with humans. For example, a remote

operator could instruct the robot to place one end-effector on

a wall to lift one foot, and a factory worker could instruct the

robot to reach a handle with one end-effector and take a fallen

tool with the other one. In these situations, language-based

instructions provide a natural communication channel and free

the hands of the operator, nor do constrain the human worker

to use computer interfaces to instruct the robot on what to do.

Giving instructions in natural language has long been

a dream of the robotics community [7, 8, 9]. For years,

this goal eluded researchers due to two main challenges:

(1) understanding what a sentence means requires a good

intuition of the context and the implicit knowledge, that

is, some “common sense” (2); there are countless ways of

expressing the same instruction, which prevents the use of

simple keywords. To give an illustration, some people might

refer to the “Handbook of Robotics” of Fig. 1 as “the big

red book”, “the book”,“the book next to your right hand”,

“the red thing”, “the big thing in front of you”, and so on.

Large Language Models (LLMs) [10] might be on the verge

of solving these challenges for robotics [11], providing a way

to give natural and general instructions to robots. Trained

on billions of human-written texts, LLMs exhibit a form of

“common sense” that allows them to interpret instructions

with their most likely meaning. They are also, perhaps

surprisingly, highly versatile, as they are capable of handling

instructions or situations not anticipated by the robot designers.

Additionally, LLMs naturally process the many ways humans

express similar concepts, as they are represented by similar

“embeddings”. Visual Language Models (VLMs) are equally

appealing, as they can link text to images and vice-versa.

In this paper, we harness the power of Foundation Models

(LLMs and VLMs) to instruct a humanoid robot about desired

contact locations for increased support in whole-body reach-

ing, an essential skill for solving several downstream tasks.

The robotics community has been working intensely on

integrating LLMs with robots since the first demonstrations of

ChatGPT (2022). The key challenge is connecting perception,

which is continuous, structured, and high-dimensional, to

language, which is linear and loosely structured, and then

to actions, which are also continuous and depend on the

specific robot. While many approaches have been proposed

(see Sec. II-B), there is currently no consensus on how to

establish this link in the general case.

We present the following key contributions:

• Words2Contact: a novel pipeline integrating LLMs

and VLMs with a multi-contact whole-body controller

to identify support contacts from verbal instructions.

• A benchmark of state-of-the-art LLMs and VLMs for

contact prediction.

• A pilot study showing that users quickly learn to use

our system to identify accurate contact locations.

• Validation of our system on a real Humanoid Robot.

To the best of our knowledge, this paper is the first to address

support contact identification from verbal instructions using

Foundation Models and demonstrate it with a humanoid robot.

II. RELATED WORK

A. Multi-Contact and Whole-Body Control

Multi-contact tasks present both theoretical and practical

challenges that must be addressed carefully. In these scenarios,

humanoid robots exhibit redundancies in their whole-body

kinematic and contact force distribution [12], for example a

robot can place its hand on a table in multiple positions,

with various combinations of force distribution for each

configuration. For humanoid robots, maintaining balance and

ensuring the feasibility of commanded motions are crucial for

safety, and require consideration of the system’s physical con-

straints. Robustness is essential for real hardware deployment,

necessitating real-time control of posture and contact forces.

Low-level control in humanoid robots is often achieved via

Quadratic Programming (QP) for whole-body optimization

[13], allowing fast computation while accounting for

constraints and allowing direct control of contact forces on

torque-controlled robots [3].

However, such robots are sensitive to model errors,

affecting robustness. In this work, we conducted hardware

experiments on the full-size humanoid robot Talos [14]

controlled in position. In this context, contact forces can be

indirectly tracked through admittance schemes [15].

Our proposed contact selection method is agnostic to how

multi-contact motion is achieved. We utilized our SEIKO

(Sequential Equilibrium Inverse Kinematic Optimization)

framework [4] for the multi-contact experiments. SEIKO

uses a Sequential QP to formulate a whole-body admittance

controller, explicitly modeling joint flexibility to indirectly

regulate contact forces on position-controlled robots.

B. Robotics and Language Models

Prior to the introduction of LLMs, numerous approaches in

both language comprehension and generation were explored

in robotics [8, 16]. However, these early methods were

limited due to their reliance on rigid, rule-based systems and

predefined vocabularies [9].

Thanks to their training on a very large dataset, LLMs

can answer to a very large set of natural language queries

without having been trained on any specific domain.

In particular they can provide high-level plans with some

“common sense” by inferring many pieces of context, thus

bypassing most of the “frame problem” [17]. In robotics,

by using well-designed “prompts” that explain the problem

to be solved in natural language and the kind of expected

output, LLMs were used to find a sequence of pre-learned

behaviors [18, 19], generate Python code to be executed

by the robot [20, 21], or cost functions for a model-based

controllers [22]. For example, “Inner Monologue” [23] uses

the ability of LLMs to generate task plans and explores

embodied reasoning through self-dialogue. “Code-as-Policies”

[21] uses the code generation abilities of LLMs to inform

robotic policies directly from natural language descriptions

without the need for further training.

In some cases where the desired structure of the output is

in a form that LLMs are not inherently able to generate, or if

the nature of the problem requires more complex responses,

additional fine-tuning may be useful [24, 25, 26]. For example,

in “BTGenBot”, behavior trees are generated through LLMs

that have been fine-tuned on specialized datasets. The key

takeaway is that a well-structured output is beneficial to

transition from non-structured high-level instructions to low-

level control commands. The drawback of fine-tuning is that

it requires large amounts of data, which is time-consuming

and resource-intensive to collect, and may introduce biases

based on how the data are collected or generated [27].

Even though the generated plans are often successful, the

ability to use language-based corrections to fix the generated

plans generated with minor adjustments during task execution

can be very useful. For example, Sharma et al. [28] present

Point Cloud
Module Selector

LLM

Prediction Module

Correction Module

Control Module

Words2Contact Overview

“Place your hand right from the hammer”

“Move more to the right”

“That's Perfect”

User Interface

Prediction Correction

Joint Position Commands

θcmd

Robot

RGB

RGB

Point-CloudInitial Prompt Final Point

HistoryPrevious Point

Contact Point [i,j]

(image frame)
1

2

3

1

2

3

3

21

Fig. 2: Words2Contact overview: (1) The user provides the first instruction. The Module Selector (Sec. III-B) classifies

it as “Prediction”. The Prediction Module (Sec. III-C) integrates the user input and the robot’s RGB data to predict a

new contact point. (2) The user wants to adjust the predicted contact; their instruction is classified as “correction”. The

Correction Module (Sec. III-D) adjusts the previous prediction based on the new user input and the RGB data. (3) The

user confirms the corrected contact location: the instruction is classified as “Confirmation”. The Control Module (Sec. III-E)

uses the PointCloud, the initial user prompt and the desired contact location to compute the desired 3D contact task, later

executed by the SEIKO Multi-Contact whole-body controller.

a model that integrates natural language and visual feedback

to adjust robot planning costs in real-time, enabling more

dynamic and responsive adaptation to new tasks. LILAC [29]

proposes a shared autonomy paradigm that updates the control

space in response to continuous user corrections. DROC

[30] further advances this paradigm by enabling LLM-based

robot policies to respond to, remember, and retrieve feedback

efficiently, significantly improving adaptability to natural

language instructions. Overall, a correction mechanism that

understands general and abstract corrections, such as “a

bit to the right”, is essential to ensure the reliability and

effectiveness of robotic systems guided by LLMs.

Instead of relying on LLMs solely trained on language,

an alternative idea is to use the same learning architectures

as LLMs (transformers), but train them on multi-modal

robotics data instead of pure text, like in the Robotics

Transformers (RT) line of work [31]. A more popular and

less compute-intensive approach is to use similar large-scale

robotics datasets and incorporate pre-trained language

and vision models with a few trained layers to connect

the components. OpenVLA [32] uses this approach with

small open-source models (7 billion parameters compared

to GPT-3’s 175 billion.), highlighting the potential for

substantial achievements with smaller models.

Regarding humanoid robots, recent research has focused

on generating human-like motions from text descriptions,

specifically through animation using simulated human-like

articulated models [33, 34]. However, for the problem of

multi-contact planning, we are only aware of a traditional (pre-

LLMs) language processing-based approach, where an n-gram

language model is employed. The goal of this model is to learn

motion as a sequence of transitions, where each word repre-

sents a shape pose, and each sentence represents a motion [9].

III. METHODS

The Words2Contact pipeline (Fig. 2) unfolds as follows:

visual feedback is streamed to the user, who starts by instruct-

ing the robot to place a contact in a specified location. The

initial prediction resulting from this instruction is displayed to

the user. If dissatisfied, the user can either correct the predic-

tion or provide a different instruction until they confirm satis-

faction with the updated predicted target. Once the contact lo-

cation is confirmed, the robot proceeds to execute the contact

placement at the specified point using the SEIKO controller.

To achieve this, we split the contact prediction task into

three sub-modules, each responsible for a specific sub-task:

Prediction, Correction, and Confirmation. This split is

crucial for ensuring that even small models will be able to

effectively handle each stage of the pipeline.

A. Prompting LLMs

We use a single LLM and dynamically adjust the system

prompt (Fig. 3) at each step of the pipeline. Furthermore, out-

puts from the LLM are constrained to JSON format to ensure a

desired structure that simplifies information extraction, in the

open source models we enforce this constraint with grammar-

based token sampling and acceptance [35], whereas for the

proprietary model we follow the documentation instructions1.

For readers unfamiliar with LLMs, it is important to

differentiate between the system prompt and the user prompt.

The system prompt is an instruction that guides the LLM’s re-

sponses, setting the tone, context, and boundaries for the con-

versation. Each module has a specific system prompt tailored

to its task, as illustrated in Fig. 3. In contrast, the user prompt

is the natural language input or query provided by the user.

B. Module Selector

The Module Selector (Fig. 2) interprets the user’s natural

language prompt and classifies it into one of three categories:

Prediction, Correction, or Confirmation.

This classification is achieved by combining two key

techniques: few-shot prompting [36] and logits bias2.

Few-shot prompting involves providing a system prompt that

describes the task that the LLM has to perform, accompanied

1OpenAI Docs: https://tinyurl.com/openaijson
2OpenAI Article: https://tinyurl.com/openailogitbias

Generate JSON output that identifies whether an instruction refers to a specific placement

on an object or a position relative to an object. Include a chain_of_thought field

explaining the reasoning process, a position field indicating absolute or relative,

and an objects field listing any objects mentioned in the instruction.

+ 5 examples

Generate detailed JSON responses to accurately position targets within a scene relative to

user-provided object positions, dimensions, and relative position instructions. Define

precise numeric expressions for calculating boundaries based on the specified center

(x, y) and dimensions (width x height) of referenced objects. For the X-axis, determine the

right boundary of the object by adding half of its width to its x-coordinate and apply a

safety margin to ensure the target is not in direct contact. Adjust the margin based on the

relative position instruction. For the Y-axis, calculate the upper boundary by subtracting

half of the object's height from its y-coordinate and adjust the margin accordingly for

vertical positioning instructions. Consider offsets with the same sign as per the user's

specifications for accurate positioning. Provide comprehensive explanations in each

JSON output to clarify how the chosen equations accurately determine the target's

boundaries relative to user-defined object positions and instructions in the scene.

Response Format:

{"chain_of_thought": "", "math_expression_x": "", "math_expression_y": ""}

+ 5 examples

Generate JSON output for selecting the appropriate end effector from the following: []

and determine if the user's description corresponds to a reaching or a contact task.

Include a chain_of_thought field explaining the reasoning process, an end-effector field

and a task-type field.

+ 5 examples

Relative Position Predictor (b)

End-Effector Selector (c)

Prompt-Analyzer (a)

Selected System Prompts

Fig. 3: Some examples of system prompts that are utilized

by the LLM in our modules. “+5 examples” refers to

the 5 examples that are added to the system prompt, as

part of the few-shot prompting technique. All the system

prompts are available at: https://hucebot.github.

io/words2contact_website/.

by examples to guide it in classifying new inputs correctly.

For this, and all the following modules, we use 5-shot

prompting, i.e., we provide five examples. Logits bias is a

technique used to adjust the output probabilities of logits,

specifically for terms such as ‘Prediction’, ‘Correction’, and

‘Confirmation’. This adjustment aims to prioritize the correct

classification of inputs into one of these three categories.

C. Prediction Module

To interpret the desired location implied by the user, we

need to have a system that leverages both natural language

instructions and visual state feedback. The Prediction module

(Fig. 4) combines both Vision Language (VLMs) and a

Large Language Model (LLM). We assume that there are

two cases of positions that the user might refer to:

1) Absolute Positions: For prompts specifying a contact

that is on an object (e.g., “place your hand on the

book”).

2) Relative Positions: For prompts where the contact

is expressed in terms of its spatial relation to the

object(s) (e.g., “left from the box”, “between the cup

and the bowl”).

The Prompt Analyzer is responsible for (a) identifying

which of the two scenarios the prompt is relevant to and (b)

isolating the object’s descriptions mentioned in the prompt

so that they can be passed to the VLMs. For complex

tasks that involve common sense and math reasoning,

chain-of-thought prompting, where the LLM is asked to

provide its thought process before reaching a conclusion,

has proven to be beneficial [37]. We combine few-shot

prompting and chain-of-thought reasoning, to achieve better

results (see the prompt on Fig. 3-a).

In the case of Absolute Positions (Case 1 in Fig. 4), we

use the capability of language-grounded segmentation models

to segment images based on natural language descriptions.

This allows the system to detect the object regardless of how

they are referenced by the user, overcoming the limitations

of classic pre-trained segmentation models that either retrieve

a mask based on a pre-trained set of labels or return a

segmentation of an image without any labeling. CLIPSeg [38],

for example, addresses this problem by extending a CLIP

model [39] with a transformer-based decoder. Once we

obtain the segmentation heatmap for the requested object,

we determine the coordinates of the contact point in image

space using the following metric: [imax,jmax]=argmaxi,jHij ,

where H is the heatmap produced by the language-grounded

segmentation model, up-scaled to the size of the original

image. While a more sophisticated point sampling technique

could be chosen to ensure sufficient space coverage, such

considerations are beyond the scope of this work.

In the case of Relative Positions (Case 2 in Fig. 4), we

utilize spatial relationships derived from the visual scene and

the verbal instruction to determine the contact location. To

achieve this, following the same intuition as in the first case,

we extract the bounding box(es) using pre-trained open-set ob-

ject detection [40]. Similarly to grounded segmentation, these

models are trained using bounding box annotations and aim

at detecting arbitrary classes with the help of language gener-

alization. The representation of a bounding box using natural

language is straightforward and thus motivates our approach.

For instance, in case 2 of Fig. 4, after we receive a bounding

box for the cup, we build the following prompt: “Cup is at

[100,150] with width=120 and height=90. Place your hand

left from the cup.” The system prompt (Fig. 3-b) contains

some basic information about the representation we are follow-

ing. Additionally, we provide a few examples to ensure that

the LLM will accurately interpret the spatial instruction accu-

rately, and will calculate the final contact position successfully.

Furthermore, instead of directly outputting a numerical value,

the LLM outputs a mathematical expression which is then

parsed and calculated using a Python parser. This choice was

made because, in preliminary experiments, we noticed a per-

formance increase of around 10% when using this approach in-

stead of having the LLM perform the computation on its own.

D. Correction Module

When dealing with humanoid robots and contacts,

precision is of high importance. The Correction module

(Fig. 5) enhances the Words2Contact pipeline by allowing

for both minor and major corrections. Similarly to the second

scenario of the Prediction Module, we detect the object(s)

stated in the user prompt, and then we retrieve their bounding

boxes. The main difference is that in the system prompt we

mention that the goal now is to correct a user-given position,

and in the final user prompt, we include the current target

position. Another important point to specify is stating a

correction that includes an object (e.g., “Move closer to the

cup.”) is optional, and we even support prompts of the form:

“Move the target a bit to the right.”. Finally, to provide a

more natural interaction with the correction module, we

include the conversation history, which allows the operator to

Contact Point [i, j]

(image frame)

{

 "chain_of_thought": str

 "position": "relative" | "absolute"

 "objects": list[str]

}

{

 "chain_of_thought": str

 "x": math expression

 "y": math expression

}

Prompt-Analyzer
LLM

Language Grounded Segmentation
VLM (e.g. CLIPSeg)

Language Grounded Object Detection
VLM (e.g. GroundingDINO)

Relative Position Predictor
LLM

Prediction Module

JSON

JSON
User Prompt

Point Sampling Function

RGB

Heatmap H

Case 1:

position = "absolute"

Case 2:

position = "relative"

Object is at [i, j] with width=w, and height = hBounding Box(es)

Case 2:
“Place your hand left from the cup”

“Lean against the white surface”

Case 1:

Verbal Instruction

RGB

to text

+

Fig. 4: The Prediction Module (Sec. III-C): the Prompt-Analyzer is an LLM that analyzes the user’s prompt and returns

a JSON file with the chain of thought, list of objects, and position type (absolute or relative). For absolute positions, a

point is extracted via language-grounded segmentation. For relative positions, a language-grounded object detection VLM

detects bounding box(es), used by the LLM to predict the contact point.

Corrected Contact: [i, j]

Relative Position Predictor
LLM

“Move far from the box”

{

 "chain_of_thought": str

 "corected_x": math expression

 "corected_y": math expression

}

Language Grounded

Object Detection
VLM (e.g. GroundingDINO)

Object in Prompt Detector
LLM

Correction Module

User Prompt

Current Contact Point [i, j]
(image frame)

{

 "chain_of_thought": str

 "objects": list[str]

}
JSON RGB

Object is at [i,j] with width=w, and height=h

Chat History

Bounding

Box(es)to text

+

Fig. 5: In the Correction Module (Sec. III-D) the LLM

detects object descriptions in the user prompt, the VLM

identifies their bounding boxes, and then uses them along

with the current target position, interaction history, and the

user’s instruction to determine a new candidate contact [i,j].

make corrections relevant to the previous ones, for example

“Move to the right.”, “Now, move twice as much as before.”.

E. Control Module

Once the user confirms their satisfaction with the displayed

contact point, we query the LLM one final time using the

end-effector selector prompt (Fig. 3-c), to determine the

robot’s end-effector (e.g., right or left hand) and the task

type (e.g., support contact or reaching). We extract the 3D

position, in camera frame pcam=[x,y,z]cam, from the point

cloud and we transform it to robot’s world frame using

forward kinematics. A spline-based Cartesian trajectory,

starting from the current position xEE
t at time t, brings the

end-effector EE to the desired contact or reaching point prob.

The Control Module utilizes SEIKO Retargeting [12, 41]

Control ModuleInitial Prompt

Final Contact: [i, j]End-Effector Selector

LLM

SEIKO Controller
e.g. eef: Right-Hand

task: Contact

Extract 3D Position

θcmd
Xcam

Fig. 6: In the Control Module (Sec. III-E), the SEIKO

Controller commands the robot to realize the desired task

with the selected end-effector at the desired contact position.

and Controller [4] to track the effector position, smoothly

establishing new contacts by redistributing contact forces

across the effector to participate in the robot’s balance. The

SEIKO pipeline takes as input the instantaneous effector

target position sampled from the spline, along with the

contact force measurements from force-torque sensors, and

produces joint positions that are sent to the robot’s hardware.

SEIKO is implemented as a model-based Sequential

Quadratic Programming (SQP) optimization method to

initially compute the desired whole-body configuration based

on the target effector position. The Controller then regulates

contact forces to achieve multi-contact motion while ensuring

robustness. For safety, SEIKO enforces motion feasibility

and imposes constraints on joint position and velocity limits,

quasi-static balance, and conditions to prevent slipping and

tipping. If the pipeline receives an infeasible or unreachable

position, the robot will attempt to approach the target as

closely as possible without compromising its balance.

IV. EXPERIMENTS & RESULTS

A. Evaluation of contact prediction using pre-trained models

In this experiment, we benchmark several state-of-the-art

pre-trained models (VLMs and LLMs): the goal is to select

the best combination for our pipeline, evaluating the impact of

the type of model and its size (i.e., the number of parameters)

on the prediction performance (mapping user inputs to pixels).

TABLE I: Success rate of each combination of foundation models.

Combination Success Rate

LLM VLM ObjectDetection VLM Segmentation
absolute relative overall

median [25%, 75%] median [25%, 75%] median [25%, 75%]

Calme-7b-Instruct Florence-2 CLIPSeg 0.67 [0.66, 0.68] 0.39 [0.39, 0.4] 0.54 [0.39, 0.66]
Calme-7b-Instruct Florence-2 CLIP Surgery 0.43 [0.42, 0.45] 0.42 [0.41, 0.43] 0.42 [0.42, 0.45]
Calme-7b-Instruct GroundingDINO CLIPSeg 0.71 [0.7, 0.71] 0.46 [0.45, 0.48] 0.59 [0.47, 0.71]
Calme-7b-Instruct GroundingDINO CLIP Surgery 0.45 [0.43, 0.45] 0.46 [0.43, 0.48] 0.45 [0.43, 0.47]

mixtao-7bx2-moe Florence-2 CLIPSeg 0.66 [0.63, 0.69] 0.34 [0.34, 0.36] 0.51 [0.34, 0.64]
mixtao-7bx2-moe Florence-2 CLIP Surgery 0.43 [0.42, 0.45] 0.36 [0.33, 0.39] 0.42 [0.36, 0.45]
mixtao-7bx2-moe GroundingDINO CLIPSeg 0.66 [0.65, 0.68] 0.41 [0.39, 0.42] 0.53 [0.41, 0.66]
mixtao-7bx2-moe GroundingDINO CLIP Surgery 0.42 [0.41, 0.43] 0.45 [0.41, 0.47] 0.42 [0.41, 0.45]

gpt-3.5 Florence-2 CLIPSeg 0.74 [0.72, 0.74] 0.39 [0.38, 0.39] 0.55 [0.39, 0.73]
gpt-3.5 Florence-2 CLIP Surgery 0.42 [0.41, 0.45] 0.34 [0.34, 0.39] 0.41 [0.36, 0.44]
gpt-3.5 GroundingDINO CLIPSeg 0.71 [0.68, 0.74] 0.5 [0.5, 0.53] 0.61 [0.51, 0.7]
gpt-3.5 GroundingDINO CLIP Surgery 0.45 [0.43, 0.46] 0.53 [0.5, 0.54] 0.47 [0.45, 0.51]

Results using Random Point Sampling 0.12 [0.08, 0.14] 0.17 [0.11, 0.21] 0.13 [0.1, 0.18]

“Step in the manhole cover” “Reach for the door handle”
“Lean between the brush
and the measuring tape”

Fig. 7: Selected records from our dataset. The yellow masks

indicate acceptable contact areas for each given prompt.

To this purpose, we created a new dataset3, with 78
tuples of images (1280×720 pixels), prompts, and manually

annotated masks corresponding to the area that satisfies the

described contact. The dataset has both indoor and outdoor

images, contains different ways of requesting contacts (e.g.,

lean, place), different end-effectors (e.g., hand, foot), and an

even distribution of relative and absolute positions (Fig. 7).

To evaluate the performance of the prediction module

and assess the impact of the LLM size, and the VLM

choice on the performance of our pipeline, we evaluate the

success rate of each combination of several models: For

the LLMs, we test Calme-7b-Instruct, mixtao-7bx2-moe

and GPT-3.5-turbo. While for the VLM segmentation we

chose CLIPSeg [38] and CLIP Surgery [42], and for the

object detection GroundingDINO [40] and Florence-2 [43].

Random selection was also used to establish a baseline.

The results (Tab. I), show that all the combinations outper-

form the random point sampling, and that the best combina-

tion of models (gpt3.5+GroundingDino+ClipSeg) selects ap-

propriate contacts in about 70% of the absolute cases and 50%

of the relative cases. One key finding is that breaking down

larger tasks into smaller subtasks enables smaller models to

achieve a success rate comparable to larger models, despite

their significantly reduced size. This suggests that task struc-

turing can be a valuable strategy in optimizing model perfor-

mance, especially when computational resources are limited.

3The dataset can be downloaded from our website: https:

//hucebot.github.io/words2contact_website/

B. Pilot Study - Evaluation of the correction mechanism and

usability of the pipeline

1st 2nd 3rd 4th 5th

Prompt Step

0

100

200

300

400

500

600
E
u
c
li
d
e
a
n
 D

is
ta

n
c
e
 t

o
 T

a
rg

e
t

(p
ix

e
ls

)

Error distribution per Interaction

Phase 1: no help

Median Line Phase 1

Phase 2: with help

Median Line Phase 2

Fig. 8: Results of the pilot study: all the participants were

able to bring the predicted contact close to the target in a few

iterations with our system, exhibiting quick learning, both

with and without prompt expert guidance. The correction

mechanism is very effective in achieving accuracy in contact

placement, which is critical for real robot applications.

To evaluate the performance and usability of our system,

we conducted a pilot study with 11 volunteer participants (9
male, 2 female, aged 26.27±1.8 y.o., min 24, max 30). All

participants had no prior experience with our system. The

pilot study was structured in two phases.

In the first phase, participants were presented with a set

of 10 images, randomly sampled from the same dataset as

in Sec. IV-A. Each image displayed a random target marked

with a circle of 18 pixels radius; the participant’s task was

to tell the system how to accurately place a point, marked

with another circle of 5 pixels radius, on the designated

target using a maximum of 5 prompt steps. Each participant

received minimal instructions and, notably, was not informed

about the existence of the correction module.

In the second phase, we provided the same participants

with an explanation of the system’s functionalities, including

two examples of prediction sentences and two correction

sentences. With this new knowledge, they instructed the

system to identify 10 targets on 10 different images.

We measured the distance between the predicted point

and the target across prompts, as the distance between the

centers of the two circles. The results (Fig. 8) demonstrate a

significant improvement in task performance in both phases:

all the users quickly learned how to use the system, and were

able to bring the point close to the target with few corrections.

Their performance was, as expected, better after the prompt

expert suggestions (the median distance at the 5th prompt is

21 pixels, which is comparable with the target circle radius).

The quick and accurate target reaching demonstrates the

effectiveness of the prediction-correction mechanism in

Words2Contact for precise contact identification, essential

for real robot applications. Participants also reported high

engagement and satisfaction with the system.

C. Real Robot experiment

We evaluated Words2Contact with the Talos humanoid

robot [14] in four distinct whole-body reaching settings

(Fig. 9), with and without corrections, with the following

user prompts p :

(a) 1 “Place your right hand on top of the book” 2 “with

your left hand, reach for the cup”.

(b) 1 “Using your right hand, lean on top of the white

surface” 2 “reach for the red plate, with the left hand”.

(c) 1 “Place your right hand right from the thing with the

wooden handle” (this is a mallet, but the user might

not know the name); operator’s correction to avoid a

collision: 2 “Move more to the right”; 3 “Reach for

the nail box, with your left hand”.

(d) 1 “Place your right hand on the white cloth”; 6

corrections 2 - 7 guide the target, as the setting lacks

distinct objects for relative positioning; 8 “with the left

hand, reach the cheez it box”.

We highlight that the operator completed all the tasks

using paraphrases to describe objects (“thing with a wooden

handle”) and rare names (“cheez it box”). The robot always

performed the task successfully.

Video/Code/Dataset: The video of the robot experiments,

the dataset of Sec. IV-A and the software to reproduce

Words2Contact are available at https://hucebot.

github.io/words2contact_website/.

V. CONCLUSIONS & FUTURE WORK

Words2Contact is especially useful in scenarios where

users cannot directly control the robot, such as in human-robot

collaboration settings and teleoperation. For instance, in a

collaborative task, the robot could autonomously choose and

adjust its hand placement on a shared work surface while the

human partner focuses on a different aspect of the task. While

the system adapts well in these contexts, the confirmation of

the final contact point remains an open question. In this work,

we mainly focused on language-based teleoperation, where the

operator is remote from the scene and can confirm the location

of the final contact point through visual feedback; however

an equivalent confirmation system will also be necessary

in human-robot collaboration. In our pilot study, users

quickly adapted to the system, and real-world experiments

demonstrated that Words2Contact delivers satisfactory contact

placements, even in challenging environments, through its

iterative correction mechanism. Based on these findings, we

expect similar performance in human-robot collaboration,

where a reliable confirmation system could ensure precise

contact point adjustments during shared tasks.

For future work, we aim to reduce user reliance on visual

feedback by enabling online corrections and scene-grounded

trajectory generation for the end-effectors [44, 29, 45].

Additionally, improving the system’s performance will

involve ensuring motion feasibility through real-time

evaluation of inverse kinematics and surface safety using

VLMs. For example, predicted contact points will be

constrained to areas that are both a) reachable and b) safe,

such as avoiding fragile surfaces like glass.

Finally, Words2Contact opens up opportunities for shared

or full autonomy by capturing human-robot interaction data

during teleoperation to build a robust dataset. This data

could be used to fine-tune LLMs or train imitation learning

approaches for shared autonomy [46], allowing the system to

autonomously manage routine tasks while requiring human

intervention only for more complex decisions.

REFERENCES

[1] K. Bouyarmane et al. “Multi-contact Motion Planning and Control”.
Humanoid Robotics: A Reference. Ed. by A. Goswami and
P. Vadakkepat. Dordrecht: Springer Netherlands, Jan. 2018.

[2] V. Padois et al. “Whole-body multi-contact motion in humans and
humanoids: Advances of the CoDyCo European project”. Robotics

and Autonomous Systems 90 (2017).
[3] B. Henze, M. A. Roa, and C. Ott. “Passivity-based whole-body

balancing for torque-controlled humanoid robots in multi-contact
scenarios”. Int. Journal of Robotics Research 35.12 (2016).

[4] Q. Rouxel, S. Ivaldi, and J.-B. Mouret. “Multi-Contact Whole-Body
Force Control for Position-Controlled Robots”. IEEE RA-L (2024).

[5] I. Kumagai. “Multi-Contact Activities by Humanoids”. Current

Robotics Reports 4.4 (2023).
[6] D. Calvert et al. “A fast, autonomous, bipedal walking behavior over

rapid regions”. IEEE-RAS Humanoids. 2022.
[7] G. Antoniol et al. “Robust speech understanding for robot

telecontrol”. ICAR. 1993.
[8] S. Tellex et al. “Robots that use language”. Annual Review of

Control, Robotics, and Autonomous Systems 3.1 (2020).
[9] C. Mandery et al. “Using language models to generate whole-body

multi-contact motions”. IEEE/RSJ IROS. 2016.
[10] W. X. Zhao et al. A Survey of Large Language Models. 2023. arXiv:

2303.18223.
[11] J. Wang et al. Large Language Models for Robotics: Opportunities,

Challenges, and Perspectives. 2024. arXiv: 2401.04334.
[12] Q. Rouxel et al. “Multicontact Motion Retargeting Using

Whole-Body Optimization of Full Kinematics and Sequential Force
Equilibrium”. Trans. on Mechatronics 27.5 (2022).

[13] A. Escande, N. Mansard, and P.-B. Wieber. “Hierarchical quadratic
programming: Fast online humanoid-robot motion generation”. The

International Journal of Robotics Research 33.7 (2014).
[14] O. Stasse et al. “TALOS: A new humanoid research platform

targeted for industrial applications”. IEEE-RAS Humanoids. 2017.
[15] S. Caron, A. Kheddar, and O. Tempier. “Stair climbing stabilization

of the HRP-4 humanoid robot using whole-body admittance control”.
IEEE ICRA. 2019.

[16] A. Cangelosi et al. “Integration of Action and Language Knowledge:
A Roadmap for Developmental Robotics”. IEEE Trans. on

Autonomous Mental Development 2.3 (2010).

“Place your right hand on top

of the book.”

“With your left hand, reach

for the cup.”
(a)

(b)

(c)

(d) “Place your right hand on the

white cloth.”
“With the left hand, reach for

the cheez it box.”

Multiple Corrections

“Using your right hand,

lean on top of the white surface.”
“Reach for the red plate,

with the left hand.”

“Place your right hand right from

the thing with the wooden handle.”

“Move more to the right.”

“Reach for the nail box,

with your left hand.”

Fig. 9: Talos receives instructions in natural language from an operator. The images show examples of sequences of reaching

actions with a support contact in different scenarios: a) book on table, b) dishwasher bottom rack, c) box on table, d) cloth over

the fridge. Orange dashed lines indicate the motion of the robot’s end-effector; blue targets indicate the prediction module’s

estimated contact locations; yellow targets indicate the corrected target if adjustments were made. Between each execution,

the operator confirmed their satisfaction with the predicted target location, but the confirmation steps are excluded for clarity.

A video showing the experiments is available at https://hucebot.github.io/words2contact_website/.

[17] D. C. Dennett. “Cognitive wheels: The frame problem of AI.” The

philosophy of artificial intelligence 147 (1990).
[18] C. H. Song et al. “Llm-planner: Few-shot grounded planning for

embodied agents with large language models”. ICCV. 2023.
[19] A. Z. Ren et al. Robots That Ask For Help: Uncertainty Alignment

for Large Language Model Planners. 2023. arXiv: 2307.01928.
[20] I. Singh et al. “ProgPrompt: Generating Situated Robot Task Plans

using Large Language Models”. IEEE ICRA. 2023.
[21] J. Liang et al. “Code as Policies: Language Model Programs for

Embodied Control”. IEEE ICRA. 2023.
[22] C. E. Mower et al. “Optimal Control Synthesis from Natural

Language: Opportunities and Challenges” (2024).
[23] J. Huang and K. C.-C. Chang. “Towards Reasoning in Large

Language Models: A Survey”. ACL. 2023.
[24] Z. Wu et al. Embodied Task Planning with Large Language Models.

2023. arXiv: 2307.01848.
[25] C. Jin et al. AlphaBlock: Embodied Finetuning for Vision-Language

Reasoning in Robot Manipulation. 2023.
[26] Y. Kant et al. “Housekeep: Tidying Virtual Households using

Commonsense Reasoning”. ECCV. 2022.
[27] Y. Yu et al. “Large Language Model as Attributed Training Data

Generator: A Tale of Diversity and Bias”. NeurIPS. 2024.
[28] P. Sharma et al. Correcting Robot Plans with Natural Language

Feedback. 2022. arXiv: 2204.05186.
[29] Y. Cui et al. “No, to the Right: Online Language Corrections for

Robotic Manipulation via Shared Autonomy”. Proc. of HRI. 2023.
[30] L. Zha et al. “Distilling and Retrieving Generalizable Knowledge for

Robot Manipulation via Language Corrections”. IEEE ICRA. 2024.
[31] A. Brohan et al. “Rt-2: Vision-language-action models transfer web

knowledge to robotic control”. CoRL. 2023.
[32] M. J. Kim et al. OpenVLA: An Open-Source Vision-Language-Action

Model. 2024. arXiv: 2406.09246.
[33] J. Ren et al. “InsActor: Instruction-driven Physics-based Characters”.

NeurIPS (2023).
[34] W. Dai et al. “MotionLCM: Real-time Controllable Motion

Generation via Latent Consistency Model”. arXiv preprint

arXiv:2404.19759 (2024).
[35] B. T. Willard and R. Louf. “Efficient Guided Generation for LLMs”.

arXiv preprint arXiv:2307.09702 (2023).
[36] T. B. Brown et al. “Language Models are Few-Shot Learners”.

NeurIPS. 2020.
[37] J. Wei et al. “Chain-of-Thought Prompting Elicits Reasoning in

Large Language Models”. NeurIPS. 2023.
[38] T. Lüddecke and A. S. Ecker. “Image Segmentation Using Text and

Image Prompts”. ICCV. 2022.
[39] A. Radford et al. “Learning Transferable Visual Models From

Natural Language Supervision”. ICML. 2021.
[40] S. Liu et al. “Grounding DINO: Marrying DINO with Grounded

Pre-Training for Open-Set Object Detection”. ECCV. 2024.
[41] R. Wen et al. “Collaborative Bimanual Manipulation Using Optimal

Motion Adaptation and Interaction Control”. IEEE RAM (2023).
[42] Y. Li et al. CLIP Surgery for Better Explainability with Enhancement

in Open-Vocabulary Tasks. 2023. arXiv: 2304.05653.
[43] B. Xiao et al. “Florence-2: Advancing a Unified Representation for

a Variety of Vision Tasks”. IEEE/CVF ICCV. 2024.
[44] L. X. Shi et al. Yell At Your Robot: Improving On-the-Fly from

Language Corrections. 2024. arXiv: 2403.12910.
[45] T. Kwon, N. Di Palo, and E. Johns. “Language models as zero-shot

trajectory generators”. IEEE RA-L (2024).
[46] Q. Rouxel et al. “Flow Matching Imitation Learning for

Multi-Support Manipulation”. IEEE-RAS Humanoids. 2024.

