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Flow Matching Imitation Learning

for Multi-Support Manipulation

Quentin Rouxel, Andrea Ferrari, Serena Ivaldi, and Jean-Baptiste Mouret

Abstract—Humanoid robots could benefit from using their
upper bodies for support contacts, enhancing their workspace,
stability, and ability to perform contact-rich and pushing tasks.
In this paper, we propose a unified approach that combines
an optimization-based multi-contact whole-body controller with
Flow Matching, a recently introduced method capable of gener-
ating multi-modal trajectory distributions for imitation learning.
In simulation, we show that Flow Matching is more appropriate
for robotics than Diffusion and traditional behavior cloning. On
a real full-size humanoid robot (Talos), we demonstrate that our
approach can learn a whole-body non-prehensile box-pushing
task and that the robot can close dishwasher drawers by adding
contacts with its free hand when needed for balance. We also
introduce a shared autonomy mode for assisted teleoperation,
providing automatic contact placement for tasks not covered in
the demonstrations. Full experimental videos are available at:
https://hucebot.github.io/flow_multisupport_website/

I. INTRODUCTION

In spite of the many advances in whole-body control, the

tasks of most current humanoid robots are implicitly split into

two parts: feet for locomotion and support, and hands for

manipulation and other interactions with the world. This view

overlooks all the possible uses of arms as additional support as

well as non-prehensile manipulation like pushing with the side

of the forearm, sliding and, more generally using the body of

the robot as a potential contact surface. By contrast, humans

routinely lean on a table to grasp a distant object, push on a

wall while pulling a heavy door, exploit handrails to increase

their stability, keep a door open with their shoulder, etc.

In this work, we focus on these scenarios that leverage

whole-body motion and multi-contact strategies to extend the

manipulation capabilities (Fig. 1). We term them multi-support

manipulation tasks, by analogy with the traditional single and

double support cases for humanoids.

Our objective is to design control policies for humanoid

robots that can leverage contacts when needed, both for adding

support and perform non-prehensile tasks. On the one hand,

model-based planners could search for support contacts, as

this is often done with footstep planning [1], [2], but this

requires a very good understanding of the world, as many

surfaces are not suitable contact surface (fragile surfaces like

windows, slippery surfaces, ...). On the other hand, model-

based approaches do not work well for pushing or sliding tasks
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Figure 1. To perform multi-support tasks, the Talos humanoid robot uses its
right hand as an additional support to extend its reach and maintain balance.
Imitation learning allows the robot to autonomously solve these tasks or assist
a human operator with automatic contact placement (see videos).

because of the non-linear dynamics of sliding and friction [3],

[4].

In this work, we address these two challenges with a

single, unified method: imitation learning for whole-body

multi-support motions. Hence, by demonstrating when and

how to establish contacts, we can leverage the human “com-

mon sense” to choose contacts, avoid modeling explicitly

the environment and sliding dynamics, and achieve real-time

performance. While imitation learning has been applied to

many tasks, it has not yet been investigated, to the best

of our knowledge, for whole-body multi-contact and contact

switching scenarios.

Many approaches have been proposed for imitation learning

in robotics. The most traditional approach is behavior cloning,

in which a neural network is learned with supervised learning

to associate states to actions [5]. To exploit the structure of

trajectories and control, a popular approach has been Dynamic

Motion Primitives [6] and various extensions like Probabilistic

Motion Primitives [7]. However, these methods tend to not

scale well to high-dimensional inputs, like images, and large

datasets. Also they are typically unable to model multi-modal

distributions of demonstrations, whereas multi-modality is

critical for many humanoid tasks. For example, if a humanoid

can reach two contact locations, left or right (Fig. 6), to add an

extra support for balance, then averaging all demonstrations

assuming a unimodal distribution will result in the policy

averaging left and right positions and placing the contact in-
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between the two, causing the robot to fall.

The recent successes on generative processes for images and

sound, like DALL-E, have inspired a new breed of behavior

cloning algorithms [8], [9]. In essence, instead of generating

an image conditioned by a text input, these algorithms generate

trajectories conditioned by a state.

The heart of these generative algorithms is a diffusion

process [10] that learns the probability distribution of actions

demonstrated by human operators and then sample new actions

from this learned model. Diffusion methods were recently

connected to optimal transport theory [11], [12], and linked

with flow-based methods [13] within a unified framework,

where Diffusion represents the stochastic counterpart and

Flow Matching the deterministic counterpart. In this work, we

hypothetize that the flow-based approaches, specifically Flow

Matching, is best suited for robotics applications: it offers a

simpler framework than the initial diffusion approach, that can

yields deterministic outputs, and allows for faster inference

without loss of quality compared to Diffusion.

In this paper, we show that a policy trained from demon-

strations can effectively provide useful assistance for multi-

support manipulation tasks, especially in the automatic place-

ment of contacts. We are interested in both autonomous task

execution as well as in assisted teleoperation/shared autonomy

[14], where a human operator controls one robot end-effector

(e.g., the left hand) while the robot autonomously controls

its entire body and notably autonomously determines support

contacts (e.g., with the right hand), regulates contact forces,

to make sure that the task commanded by the human can be

executed without the robot falling.

In summary, the contributions of our work are three-fold:

• We introduce an imitation learning formulation and ar-

chitecture that enables multi-support manipulation tasks.

• We showcase the Flow Matching generative method for

generating whole-body movements on a full-size hu-

manoid robot, demonstrating its advantages over Diffu-

sion methods and its potential for robotic applications.

• We demonstrate that the autonomous policy learned from

demonstrations can assist the human operator in a shared

autonomy mode. This assistance performs automatic con-

tact placement and is valuable in situations where the task

varies from the demonstrated scenario, making the policy

unable to solve the task alone.

II. RELATED WORK

Classical model-based approaches address multi-contact

tasks hierarchically. Simplified template models or heuristics

determine contact placement and sequence [1]. Then trajectory

planning [2] and control methods generate optimized whole-

body motions, tracking them on the actual system while regu-

lating interaction forces and maintaining balance. The control

of complex robots, humanoids, and multi-limb systems [15], is

well understood through model-based optimization approaches

and these methods have been demonstrated on both torque-

controlled [16]–[18] and position-controlled [19]–[22] robots.

However, optimizing contact placement and sequencing is

highly challenging, involving both continuous and discrete

decisions. Contact-rich tasks, such as non-prehensile [3], [4]

tasks, pose significant challenges due to sliding contacts,

diverse valid strategies of sequences, and the requirement to

consider the entire object geometry rather than predefined

contact points.

Instead, we adopted an imitation learning approach [23]

which learns from human demonstrations, and specifically

the Behavior Cloning (BC) method [5] building a policy that

directly maps observations to actions in a supervised manner.

Traditional BC such as DMP [6] or ProMPs [7] performs

well on simple tasks within the demonstrated state-space

distribution but suffers from accumulation of prediction errors,

which can lead to state divergence and failure. To address

this, our policy predicts trajectories of actions, aligning with

recent works [9], [24], [25], enhancing temporal coherence

and mitigating error compounding.

Another limitation of BC is handling the variability in

human demonstrations, idle actions, and different strategies

used to solve the same tasks. These demonstrations form

a multi-modal distribution that can be non-convex, making

averaging data dangerous as it can lead to task failure. Recent

approaches address this by reformulating BC’s policy as a

generative process.

Denoising Diffusion Probabilistic Models (DDPM) [10]

have emerged as a new class of generative models that outper-

form previous generative models. DDPM reverses a diffusion

process that adds noise to a clean sample until it becomes

Gaussian noise. By solving a Stochastic Differential Equation,

it then generates a clean sample from this noise. Denoising

Diffusion Implicit Models (DDIM) [26] instead solve the

reverse process as an Ordinary Differential Equation, reducing

inference steps for faster computation at the expense of quality.

Originally used for image generation, recent works [8], [9],

[25], [27] have applied these techniques to reinforcement and

imitation learning. They generate action trajectories that mimic

human demonstrations conditioned on the task’s state, ef-

fectively capturing high-dimensional probability distributions

and handling non-convex, non-connected distributions with

multiple modes.

Flow Matching [13] is a novel generative method based

on optimal transport theory [11], [12], sharing theoretical

similarities with DDPM and DDIM. It is simpler with fewer

hyperparameters and more numerically stable than DDIM.

Flow Matching produces straighter paths in the transport flow,

improving generation quality with a given number of integra-

tion steps, or enabling faster inference at equivalent quality

using fewer steps, crucial for real-time robotic applications.

In line with [28]–[30], which demonstrated improvements of

flow over diffusion in simulated robotic tasks, we investigate

the application of Flow Matching in robotics and deploy it on

real humanoid.

III. METHOD

We present a learning-from-demonstration approach for

humanoid robots to perform multi-support manipulation tasks,
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Figure 2. The system architecture uses three different operational modes (right) as high-level controllers outputting effector commands. These commands
are realized on the robot (left) by SEIKO Retargeting [31], [32] and SEIKO Controller [22].

enhancing manipulation capabilities through additional con-

tacts and whole-body motions. These tasks are executed either

autonomously or through assistive shared autonomy, where

the human operator partially commands the robot while the

learned policy provides assistance and contact placement. We

highlight how our method handles contact switch transitions

and controls the resulting multi-contact motions on real hard-

ware.

A. Overall Architecture

We designed our architecture (Fig. 2) with two hierarchical

modules to enhance robustness. A model-based low-level

controller addresses whole-body optimization, multi-contact

force distribution, contact switching and tracking with strict

feasibility constraints. A learning-based high-level controller

handles Cartesian effector commands, contact locations, and

sequencing. It outputs a Cartesian pose target in world frame

and a contact switch command for each effector. Effectors can

either be fixed in contact with the environment (enabled state),

actively applying forces to balance the robot, or not in contact

and free to move (disabled state). The contact switch command

is a discrete signal that triggers the transition between enabled

and disabled states implemented by the low-level controller.

The high-level controller in Fig. 2 operates in three different

modes. The teleoperation mode is used to create a dataset

recording effector commands sent to the low-level controller

and poses of external markers detected by the robot’s head

camera. The human operator directly commands the robot

to collect demonstrations, solving the task from randomized

initial states or performing recovery actions from manually

selected states outside nominal execution. The autonomous

mode uses the policy trained by imitation of collected demon-

strations to solve the task. The assistive shared autonomy

mode combines human and policy commands to address out-

of-distribution tasks. The operator commands one effector

while the policy autonomously manages the others. The policy

uses identical inputs and post-processing in both shared and

full autonomous modes. However, in shared autonomy mode,

the operator’s commands replace the policy’s output for the

effector they control.

Despite [9], [25] showed that diffusion-based imitation

learning can learn from raw images or point clouds, we opt

to use fiducial markers in this work to monitor the task’s

exteroceptive state. This allows us to focus instead on the

challenges related to contact switches and multi-contact. An

RGB-D camera on the robot’s head detects these markers in

the color image using the AprilTags system [33]. The 3D

positions and orientations of the markers in the camera frame

are extracted from the point cloud. These coordinates are then

transformed into the robot’s world frame using the forward

kinematic model. The poses of the markers are recorded in

the dataset during human expert demonstrations and fed as

input to the autonomous policy.

B. Behavioral Cloning Policy and Contact Switch

The behavioral cloning policy takes as input the current

effector pose commands, contact states, and detected marker

poses. It outputs a trajectory of future effector pose commands

and contact switch commands for all effectors. Formally, the

policy is defined as follows:

Policy π : sk −→ ak where

sk includes:
[

X
eff i
k ceff i

k τ eff i
k

]

∀i,
[

X
tag j

k τ tag j

k

]

∀j,

ak includes:

[

X
eff i
k X

eff i
k+1 · · · X

eff i
k+N

γeff i
k γeff i

k+1 · · · γeff i
k+N

]

∀i,

(1)

and where i ∈ N indexes the effectors, j ∈ N indexes the

markers, N ∈ N is the number of predicted time steps,

k ∈ N is the inference time step, X
eff i
k ∈ SE(3) is the

pose command in world frame of effector i at time step k,

ceff i ∈ {0, 1} is the boolean contact state command of effector

i (0 for disabled or 1 for enabled), γeff i
k ∈ R is the continuous

contact state command (disabled or enabled) for effector i at

time step k, τ eff i ∈ R is the (clamped) elapsed time since

last contact switch of effector i, X tag j ∈ SE(3) is the latest

updated pose estimate in world frame of marker j, τ tag j ∈ R

is the (clamped) elapsed time since marker j pose was last

detected and its pose was updated.

Fig. 3 depicts the signals employed by the policy to imple-

ment contact switching commands. When adding or removing

a contact, the low-level retargeting and controller necessitate

a time delay to smoothly transfer the robot’s weight and

redistribute contact forces. The policy uses τ eff i to observe the

progression of the contact transition and reproduce the waiting
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Figure 3. Input and output signals used to command contact switches.
The policy outputs the continuous command signal γeff converted to a
discrete contact switch command ceff using a hysteresis threshold. The time
information τ eff disambiguates the states and produces the waiting behavior
required when removing or adding a contact.

behaviors demonstrated by the operator upon triggering a

contact switch. The policy outputs the continuous signal γeff

indicating the desired state for a contact. The contact transition

is activated and sent to the low-level whole-body retargeting

module upon a state change of the discretized desired state

ceff defined by the following hysteresis threshold:

ceff i
k =











1 if ceff i
k−1 = 0 and γeff i

k ⩾ 0.8 and τ eff i
k ⩾ 20.0

0 if ceff i
k−1 = 1 and γeff i

k ⩽ 0.2 and τ eff i
k ⩾ 20.0

ceff i
k−1 else

(2)

To avoid unbounded and out-of-distribution states, we clamp

the time inputs τ eff and τ tag to a maximum of 20 s (see Fig.3)

as a large upper bound. We apply data augmentation during

training by randomizing detected marker times τ tag to enhance

robustness against occlusions.

C. Trajectory Generation with Flow Matching

We build the behavioral cloning policy as a generative

process, which learns from data a probability distribution and

sample new elements from it. The resulting policy is stochas-

tic, and samples trajectories that mimic the ones demonstrated

by the human operator in the same state. Specifically, we

employ the Flow Matching method [13], which constructs

a flow vector field that continuously transforms a source

probability distribution into a destination distribution. Fig. 1

illustrates a flow transforming a 1D simple source distribu-

tion which can be easily sampled, into a more complex,

multi-modal distribution. Flow Matching, grounded in optimal

transport theory, can be seen as the deterministic counterpart

to Diffusion methods [11]. After sampling from the source

distribution, the integration of the flow produces samples

from the destination distribution deterministically, contrasting

with Diffusion [10], which introduces noise during transport.

Flow Matching typically yields straighter flows, enabling faster

inference.

The training of Flow Matching is defined as follows:

a
src ∼ P src, a

dst ∼ Pdst, t ∼ U [0, 1], zt = (1− t)asrc + tadst,

Lflow = E
a

src,adst,t

∥

∥f(zt, t, s)− (adst − a
src)

∥

∥

2
,

(3)

where P src is the source distribution, chosen as a multivariate

normal distribution P src = N (0, I), Pdst is the destination

distribution (here the demonstration trajectories), a
src and

a
dst are the trajectories sampled from source and destination

distributions (see (1)), t ∈ R is the scalar flow transport

time uniformly sampled between 0 and 1 representing the

progression of the transformation from source to destination, s

is the input state associated to the command trajectory a
dst, zt

is the interpolated trajectory at transport time step t between

source and destination trajectories, Lflow ∈ R is the scalar

training loss function. f is the flow model conditioned by the

state s:

Flow f : z, t, s −→ ∆z, (4)

implemented as a neural network and trained using back-

propagation minimizing the loss Lflow.

The inference procedure is illustrated in Fig. 4. A noisy

trajectory is first sampled from the source distribution and then

transformed into the destination trajectory by integrating the

flow from t = 0 to t = 1 over several steps. Formally, the

inference process is defined as follows:

z0 = a
src, z1 = a

dst

zt+∆t = zt +∆tf(zt, t, s) for t = 0...1
(5)

D. Trajectories Stitching and Processing

Since inference is not instantaneous and the policy outputs

a trajectory of future commands, online stitching (Fig. 5) and

processing are required to ensure smoothness, safety, and ro-

bustness of the commands sent to the low-level controller. The

autonomous high-level controller computes the policy’s next

commands trajectory in parallel while continuously sending

effector commands to the SEIKO low-level, sampled from the

previous trajectory. When a new inference starts, the policy

uses the latest effector commands and marker pose estimates

as the current state. Upon completion, a smooth transition to

the new commands trajectory is achieved through linear in-

terpolation over a fixed time. The policy produces trajectories

represented as 5 Hz time series, which are resampled at 100 Hz

using linear interpolation for use by the high-level controller.

A zero-phase low-pass filter (first-order exponential filter) is

applied on the trajectory to remove residual noise from flow

inference and interpolation.

E. Multi-Contact SEIKO Retargeting and Controller

Robots with multiple limbs in multi-contact exhibit redun-

dancy both in kinematics and contact force distribution. Many

different whole-body postures can achieve a desired effector

pose, and many contact force distributions can maintain equi-

librium for a given posture. To perform multi-support manip-

ulation on real robots, it is essential to consider kinematic

and actuator torque limits, contact and balance constraints

to prevent slipping, failing, and ensure operational safety.

Contact switch transitions are discrete decisions that signifi-

cantly impact system’s balance, requiring careful consideration

for smoothness and safety. These transitions are not always

feasible and typically take a few seconds. Smoothly removing

a contact requires gradually reducing the contact force to zero
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Figure 5. The policy outputs new trajectories (yellow, orange, red) of fixed
length at regular intervals. Due to the time required for inference, each new
trajectory is seamlessly stitched online with the previous one to prevent
discontinuities using linear interpolation. The dashed green trajectory depicts
the resulting commands sent to the low-level retargeting.

by adjusting the whole-body posture and redistributing the

contact forces, necessitating precise regulation of the contact

forces on the actual system. Our proposed method relies

on the SEIKO (Sequential Equilibrium Inverse Kinematic

Optimization) Retargeting and Controller methods developed

in our previous work [22], [31], [32], [34] to address these

diverse challenges.

SEIKO Retargeting [31], [32] uses a model-based Sequen-

tial Quadratic Programming (SQP) optimization to compute a

feasible whole-body configuration (joint positions and contact

forces) tracking the effector pose commands. It integrates the

command filtering pipeline detailed in [22], [32]. The retarget-

ing adapts the robot’s motion to enforce safety constraints in

response to risky or infeasible commands from either human

operator or the policy.

SEIKO Controller [22] integrates an explicit modeling of

joint flexibility and utilizes an SQP whole-body admittance

formulation to regulate the contact forces on a position-

controlled humanoid robot. The controller improves robustness

to model errors and enable real robot experiments by regulat-

ing contact forces. To further enhance robustness against inac-

curacy in contact placement, we extended SEIKO Controller

with the effector admittance control scheme named “damping

control” detailed in [21]. This scheme addresses scenarios

where the learned policy activates a contact too early while

still in the air, or too late after already exerting forces on the

environment. The presentation, comparison, and discussion of

this control scheme are provided in the supplementary material

of [22].

Table I
TRAINING, INFERENCE AND PROCESSING HYPERPARAMETERS

Description Value

Trajectory sub-sampling frequency 5 Hz
Trajectory length N = 32 steps (6.4 s)
Input state dimension 20 + 10× #markers
Output trajectory dimension 13
Elapsed times τ eff and τ tag clamping 20 s
U-net model layer sizes [32, 64, 64]
U-net model convolution kernel size 5
Number of model’s trainable parameters 666029 (single marker)

Training learning rate 10−4

Number of training epochs 5000
Inference period 4 s
Interpolation length 0.5 s

IV. RESULTS

A. Implementation Details

The Talos robot is a humanoid robot manufactured by PAL

Robotics of 1.75 m height, 99.7 kg and 32 degrees of freedom.

We replaced the robot’s right-hand gripper and forearm with a

3D-printed, ball-shaped hand to withstand high force contact.

In our experiments, we control only 22 joints, all in position-

control mode, excluding those in the neck, forearms, and

wrists. We mounted an Orbbec Femto Bolt RGB-D camera on

the robot’s head, replacing the original camera and providing

color images and point clouds.

In our experiments, the robot’s left and right hands are

used as effectors commanded by the operator for manipulation

tasks, while the feet remain fixed. Only the right hand is used

for making contact with the environment on the 3d-printed ball

shape. Depending on the experiment, we use between 1 and 3

external fiducial markers. The human operator teleoperates the

robot with a direct line of sight, and uses separate 6-DoF input

devices1 to command the velocity of each hand, providing after

integration the effector pose commands.

The policy is trained in Python using the PyTorch library

with GPU acceleration, whereas online inference is performed

in C++ on the CPU (Intel i9-9880H 2.30 GHz). See Table I

for hyperparameters. The flow model is implemented as a 1D

convolutional U-Net neural network with residual connections,

akin to the model implemented2 in [9]. For each effector,

the predicted poses in the output trajectories (Xeff i
l )k+N

l=k are

13Dconnexion SpaceMouse: https://3dconnexion.com/uk/spacemouse/
2Diffusion Policy code: https://github.com/real-stanford/diffusion_policy

https://3dconnexion.com/uk/spacemouse/
https://github.com/real-stanford/diffusion_policy
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Method Inference
Time
(ms)

In Distribution Out of Distribution

Success
Rate

Median [Q1, Q3]
(cm)

Success
Rate

Median [Q1, Q3]
(cm)

Demonstrations – 100% 1.3 [0.9, 2.0] – –

Flow 20 steps 35± 4 99% 1.4 [1.0, 2.1] 78% 3.4 [1.9, 5.7]

DDPM 100 steps 178± 12 100% 1.5 [0.9, 1.8] 69% 4.0 [2.4, 5.9]

DDIM 20 steps 39± 4 100% 1.4 [0.9, 2.0] 67% 3.9 [2.7, 6.1]

Supervised Learning 3± 1 92% 4.1 [2.6, 5.3] 52% 7.6 [4.3, 12.3]

Figure 6. Simulated contact reaching task: The robot extends its right hand to establish contact with one of the two support platforms (left), where the initial
position of the hand and the position of the platforms relative to the robot are randomized. Autonomous mode results over 100 trials for each model, both in
and out of distribution, are reported (right). Success rate (contact switch activated and distance to closest platform < 8 cm), median, Q1, and Q3 quartiles of
contact placement error (if contact was established) are detailed.

encoded relative to the pose in the input state X
eff i
k such that

all predicted positions and orientations trajectories start from

zero. The effector orientations in the input state are encoded

using the 6D rotation representation [35], whereas the relative

orientations in the predicted output trajectories are expressed

as 3D axis-angle vectors.

SEIKO Retargeting and Controller are implemented3 in

C++, using the Pinocchio rigid body library, the QP solver

QuadProg [36] and run onboard the robot at 500 Hz. The

fiducial external markers are detected in the color image using

the AprilTag library at 30 Hz.

B. Simulated Reaching and Contact Placement Task

We compare in our experiments the Flow Matching method

for robotics applications with its Diffusion counterpart and a

classical supervised learning baseline. We present statistical

results for the following variant methods:

• Demonstrations: dataset collected by the expert human

operator and used to train all autonomous policies.

• Flow 20 steps: Flow Matching method described in

Section III-C. The flow is integrated (see Fig. 4) over

20 steps.

• DDPM 100 steps: vanilla DDPM method [10] trained

with 100 denoising steps, and inferred with 100 steps.

• DDIM 20 steps: uses the same trained model as DDPM,

but is inferred with the Diffusion implicit variant [26] and

20 steps, expected to be faster than DDPM at the expense

of quality.

• Supervised Learning: classical behavior cloning method

[5] trained with Mean Square Error (MSE) loss. It has

same inputs-outputs and also predicts trajectories, but it

is not a generative process and does not capture the data

distribution.

We evaluate the main capabilities of policies: first, their abil-

ity to autonomously perform contact switching as described in

Section III-B; second, their ability to learn from demonstra-

tions with a multi-modal distribution; third, their accuracy in

placing contacts, which is crucial for robotics applications;

and fourth their inference time. Within the simulated task

illustrated in Fig. 6, we teleoperated 86 demonstrations totaling

2442 s. The hand was placed randomly on either the left

3SEIKO implementation: https://github.com/hucebot/seiko_controller_code

or right platform, regardless of the initial state to create a

bimodal distribution. An external marker is attached on top

of the left platform, with the position of the right platform

fixed relative to the left. We also assess how the policies

generalize out-of-distribution, where initial hand positions and

platform positions are uniformly sampled from a wider range

that encompass and excludes the range used for in-distribution

cases.

Both Flow and Diffusion approaches outperform the base-

line (Fig. 6), as supervised behavior cloning is hindered by the

multi-modal nature of the distribution, causing the baseline to

average out across non-convex spaces. Flow Matching also

slightly outperforms Diffusion in out-of-distribution cases,

with favorable inference time and accuracy, which is in line

with other works published on this topic [28]–[30].

C. Simulated Non-Prehensile Manipulation Task

We then evaluated our proposed method on the more

challenging non-prehensile manipulation task shown in Fig. 7.

This task aims to thoroughly test multi-support and whole-

body strategies with higher multi-modality, necessitating both

the addition and removal of contacts. The humanoid robot

must use both hands to push a concave T-shaped 3D object

on a planar table surface, maneuvering it to match a target

position and orientation fixed on the table. Solving the task

strongly relies on multi-support capabilities, as the robot can

not reach forward far enough to push the object from behind

without using its right hand as additional support. The robot

interacts with the box using contact-rich dynamics that heavily

depend on geometries of the box and robot’s effector, as

well as friction and sliding properties of surfaces. The task

allows for various multi-modal strategies by applying different

pushing sequences on the box’s sides. It requires several

contact switches to push the box left and right with both hands,

followed by precise final adjustments. This box-pushing task

is a more challenging 3D whole-body extension of a simpler

2D top-down environment used as a benchmark in previous

work [4], [9], [37].

In a real-time simulated environment, we teleoperated the

robot to record 68 demonstrations totaling 6161 s. The initial

position and orientation of the box were randomized on the

table, while both the target pose for the object and the position

of the robot’s feet remained fixed. A single marker is placed

https://github.com/hucebot/seiko_controller_code
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Figure 7. Simulated non-prehensile pushing task: the robot uses both hands to push the gray T-shaped object to the match the green target shape. For further
pushes from behind the object, the robot extends its reach by placing its right hand on the table for support (red color indicates that the contact is enabled,
blue is disabled).
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Figure 8. Simulated T-box multi-support pushing task: normalized overlap-
ping distance between the object and the target pose over time (left) and final
success rate (distance < 0.3) after 300 s (right). The distribution, median, and
quartile statistics, evaluated over 100 trials for each method, are reported.

and attached on top of the object, providing its pose to the

policy. After training, the resulting policies were evaluated in

the simulated environment for 300 s and across 100 trials each.

We quantify the task performance of how the box’s pose

matches the target by measuring the planar overlapping surface

between the manipulated T-shaped object and the fixed T-

shaped target of the same size. Specifically, we define the

task error metric as the normalized overlapping distance
√

1− (overlapping surface)/(shape surface), where an error

of 0.0 indicates a perfect match, and an error of 1.0 indi-

cates no overlap between the two shapes. Since policies lack

stopping criteria and continuously interact with the object, we

consider the lowest error achieved so far within each trial.

Fig. 7 showcases an example of autonomous execution,

while Fig. 8 presents the comparison statistical results. All

autonomous methods compared have failure cases. The two

most common failure scenarios are when the robot collides

with the top of the box, considered as a stopping criterion,

or mistakenly pushes the box into a configuration where

necessary adjustments are no longer reachable. The Flow

and Diffusion methods, theoretically very similar, exhibit

comparable behavior and performance by the end of episodes.

Both methods outperform the supervised behavioral cloning

baseline. Flow method tends to marginally outperform its

Diffusion counterparts which is coherent with [28], [29],

achieving statistically faster task completion and exhibiting

slightly less variance. As expected, Diffusion with 100 steps

performs marginally better than Diffusion 20 steps, showcas-

ing the trade-off between inference time and performances.

D. Hardware Experiments

The attached and additional videos4 showcase our multi-

support hardware experiments on the Talos humanoid robot.

1) Autonomous Mode In Distribution: First, we validated

our proposed contact placement and switching capabilities by

having the robot push and close both upper and lower drawers

of a dishwasher (Fig. 1, Fig. 9). This task is straightforward for

humans but remains challenging for humanoid robots. Because

of both leg and torso joint position and torque limits, the robot

needs to add an extra contact on top of the dishwasher to reach

without falling the lower drawer, which is 40 cm above the

ground.

We teleoperated the robot to collect 35 demonstrations

with a total length of 1734 s. Three markers were used,

one on top of the dishwasher and one on each drawer. As

shown in the additional videos, the reactive policy learned

with Flow Matching successfully solves the task autonomously

and responds to disturbances that may reopen already closed

drawers. The robot first closes the upper drawer in double

support and then reaches to close the lower drawer, placing

additional right hand support on top of the dishwasher. This

experiment also validates our architectural choice, where the

low-level retargeting and controller successfully execute the

multi-support manipulation tasks commanded by the learned

policy. Without the controller enabled, any far-reaching motion

tends to cause the robot to fall due to model errors.

Second, we demonstrated the box pushing task (Fig. 7)

on the real Talos robot (Fig. 1, Fig. 10). The robot easily

manipulates the box with both hands when nearby. But, when

pushing it from behind, the right hand contact is needed

to compensate for interaction forces from the box’s mass

and static friction on the nearly fully extended left arm. We

recorded 51 demonstrations of 5521 s with the red T-shaped

box, and we used three markers on the object instead of only

one to mitigate sensor noise and self-occlusion. The policy

4Additional videos: https://hucebot.github.io/flow_multisupport_website/

https://hucebot.github.io/flow_multisupport_website/
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Figure 9. Talos robot closes the upper and lower drawers of a dishwasher with its left hand. To maintain balance while bending forward to close the lower
drawer, the robot places its right hand on top of the dishwasher. The task is performed in both fully autonomous mode and shared autonomy mode. In shared
autonomy mode, the human operator commands the left hand while the robot automatically places the right hand in contact when the operator attempts to
reach the lower drawer.

Figure 10. Non-prehensile box pushing task on the Talos robot. The Flow Matching policy, learned from demonstrations using the red T-box, can autonomously
maneuver the red box to match the target. However, when applied out-of-distribution to the blue U-box, the autonomous mode alone cannot solve the task.
Despite this, the policy still provides valuable assistance in shared autonomy mode, where the operator commands the left hand and the policy commands the
right hand.

learned with Flow Matching successfully solves the red T-

shape case using both hands, dynamically adding or removing

right-hand contacts, and effectively reacts to disturbances

applied to the object (see additional videos).

2) Assistive Shared Autonomy Out of Distribution: Im-

itation learning only performs well in-distribution for the

task it was trained on. We assessed this by testing the box-

pushing task with a blue U-shaped box, representing an out-of-

distribution case. As expected, the autonomous policy trained

on red T-shape performed poorly with the blue U-shaped box,

failing and getting stuck while attempting to push on non-

existent sides.

We evaluated our assistive shared autonomy mode [14]

(Fig. 2) on the real robot (see additional videos) aiming to

address this known downside of imitation learning. In this

mode, the human operator commands only the left hand, while

the policy commands the right hand, which is responsible for

adding or removing the upper body support. We solved the

box pushing task in the blue U-shape out-of-distribution case

using this assisted teleoperation approach. The operator makes

fine adjustments with the left hand while the policy adds the

right-hand contact to enable distant reach. When the object

moves right and becomes unreachable with the left hand, the

policy removes the right-hand contact, and pushes the object

back toward the left side. In the dishwasher task, the shared

autonomy mode automatically places the right-hand contact on

top of the dishwasher when the operator commands the left

hand to go below a certain height while attempting to reach

down.

V. DISCUSSION AND CONCLUSION

Our experiments with multi-support tasks show that Dif-

fusion and Flow Matching both outperform the traditional

behavior cloning with supervised learning approach (our base-

line). We hypothesize that this advantage arises because these

tasks are diverse, multi-modal, and require intricate strategies.
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The learned policies are robust enough to be deployed on

a real, full-size humanoid robot (Talos), enabling it to au-

tonomously perform multi-support tasks, including pushing

a box and closing drawers with the help of the free hand

for balance. Using a shared-autonomy assisted teleoperation

approach, extendable to natural language interaction [38], we

demonstrated that policies learned from demonstrations can

assist in automatic contact placement, even for tasks that differ

from the demonstrations.

Like other methods based on behavior cloning, the per-

formances depends on the quality of expert demonstrations.

The human operator must not only demonstrate the desired

behavior but also include recovery actions that enable the

policy to correct deviations from the nominal path and handle

potential disturbances. Recent prior work [9], [25] have shown

that autonomous policies can be learned directly from raw

images or point clouds, eliminating the need for fiducial

markers. This aligns with our work and represents a natural

extension, complementing the contact switch capability we

propose. Our SEIKO low-level controller supports creating

contacts using both predefined hand and foot effectors, while

the imitation learning framework enables interaction with the

robot’s entire geometry, such as non-prehensile pushing with

its forearms. This paves the way for complex multi-support

loco-manipulation tasks and further exploration of learning

contact placement from human expertise.
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