Metabot: a low-cost legged robotics platform for education

Grégoire Passault, Quentin Rouxel, Frangois Petit, Olivier Ly

Abstract— This paper introduces an open-source 3D printed
low-cost legged robot environment designed for educational
purposes. The platform, called Metabot, is already operational
and is currently experienced by teachers and pupils. The
robot as a teaching aid, has several advantages: at first, it
is stimulating for pupils, especially legged robots. Second,
robotics is multidisciplinary and centralizes a broad spectrum
of knowledge for the pupils; in particular, it allows to introduce
programming in a concrete environment, which is now an
important need in school. Finally, legged robots can illustrate
concretely several matters of geometry.

I. INTRODUCTION

Education is currently changing in secondary and high
school. In France, the official national high school courses
have introduced programming skills in teaching objectives.
Actually, it mentions that pupils may learn ”Programming
moves on a robot or a character on the screen”!. Let us add
that cross-disciplinary projects are encouraged, which further
supports the use of robots.

Robots are indeed in all these scopes: they are cross-
disciplinary, involving mechatronics, physics, mathematics,
but also a lot of programming, for both low-level components
and high-level behaviours. Let us also emphasize that robots
have a motivating and stimulating role in such a context.

We presents the Metabot environment. It is centered
around a quadruped robot (see Figure 1). The fact that the
robot is legged increases the motivating character for the
pupils. But more than that, this implies that the robot is
holonomic. This fact opens new possibilities for dealing
with the concept of trajectory for pupils. Also, legs offer
a good context for illustrating several matters of geometry
in a concrete way.

In the other hand, more and more on-the-shelf DIY com-
ponents are available. An example is low-cost digital robotics
servomotors that were released recently. Metabot uses XL-
320 from Robotis[1]. One of the most interesting feature is
a clutch-like mechanism that allows to avoid breaking the
gearbox or the shaft when the motor can’t provide enough
torque. This makes low-cost plastic geared safe to use.

Today, the environment has been tested in several schools,
in technology courses and in mathematics for programming.
This is the second year of test. We also set up a robotics
competition around the Metabot Environment: the Metabot

Three authors are with the Rhoban team, LaBRI, University of Bordeaux,
France. Emails: {gregoire.passault, quentin.rouxel,
olivier.ly}@labri.fr,medsPahisanmmmnmwswmmﬂ
in secondary school.

http://www.education.gouv.fr/pid285/bulletin_
officiel.html?cid bo=94753

League. At the moment, the Metabot is ready to be used at
low cost.

Several other solutions exist for using robotics in edu-
cation. Let us mention the Thymio robot together with its
programming environment Aseba ([2], [3]). Let us mention
also the robot Dash which uses a scratch-like environment
for programming. These robots use wheels for locomotion
and are not holonomic. We explore a solution with legs.
Let us also mention le project Poppy[4] which proposes a
humanoid robot for educational purposes, in particular to
illustrate interaction with users. In the Metabot project, we
investigate a low-cost solution (a few hundreds euros). Let
us mention that we used Blockly as, which is a version of
Scratch ready to be used in third party software.

Parts
(3D or laser)

Digital
servos

32-bit ARM controller
9DOF IMU, Distance
sensor, Bluetooth,Buzze

Fig. 1: Overview of the Metabot 12-DOF legged robot

The paper is organized as follows: we will discuss the
design of a legged robotics platform for education. We will
first describe the (hardware and software) robot architecture
and then explain user experiences with it.

II. ARCHITECTURE

The robot design is open-source?, which means that parts,
electronics and software are available. People can build their
own, buying on-the-shelf components and 3D-printing parts.
It is also sold as a kit?, that contains all the required parts
for more convenience.

Selling a robot as a kit lowers the price, and mounting
it is an interesting experience for the end-users. Metabot is
mainly based on plastic rivets that are fast to assemble and
disassemble. Having a robot open-source with documented

2https://github.com/Rhoban/Metabot /
3http://metabot.cc/

http://www.education.gouv.fr/pid285/bulletin_officiel.html?cid_bo=94753
http://www.education.gouv.fr/pid285/bulletin_officiel.html?cid_bo=94753
https://github.com/Rhoban/Metabot/
http://metabot.cc/

parts and assembled by end-user is comforting because it
allows later repair and maintenance, like replacing a motor.

A. Hardware considerations

The first design was made up with 3D printed parts. This
is a clearly good choice to bootstrap such a project, since
it quickly leads to a viable proof of concept. It is also an
interesting asset in the educational world, since more and
more schools are getting equipped with 3D printers. The
robot was sold with and without 3D parts, letting the end
user decides if he wants to make it himself or buy it. The
next version of the platform will be cut from PMMA (using
laser) or ABS (using milling) sheets. This is a good trade-off
to avoid affording the cost of mould and injection.

As controller, a Cortex-M3 is used, which is one of
the most widespread arm-based microcontroller, running at
72mhz, 120KB flash and 20KB SRAM. There is no operating
system.

The digital servos are based on half-duplex serial daisy
chaining. All the servos are addressed by an Id on the bus.

We decided to use bluetooth as communication because
it is present on most modern computers and phones, with
a simple pairing procedure. On-the-shelf bluetooth to serial
chips are now available at reasonably low cost.

To secure the LiPo battery power supply, a fuse is added.
If the input voltage reaches a too low level, an alarm is
triggered to signal it to the user. If the battery isn’t changed,
the fuse is destroyed, making the electronics circuits opened
and avoiding any problems related to over-discharging the
battery.

B. Motion

The robot motion is similar to the one described in [5],
the inverse kinematics was solved analytically to be able to
control the leg position in the Cartesian body of reference.
Figure 2 is a representation of the degrees of freedom of
each leg. Kinematic is a direct application of trigonometry
that is interesting to mention. This is a simple example of
real use case of trigonometry to be presented to pupils.

Fig. 2: Representation of the kinematic chain of a leg of the
robot.

Legs are following splines, and their phase is trot pattern,
which means that diagonally opposed are moving simultane-
ously. This pattern has experimentally proven to be efficient
and stable in much situations.

The control parameters of the robot are (&, 7, 0), respec-
tively speed along x, y axis and rotation speed. This results
in an holonomous walk. The robot can reach speeds as high
as 40cm/s.

Other parameters can be tuned, making the robot more
or less efficient regarding the floor frictions and possible
obstacles. They are footstep height, walk frequency (the
number of step per second), the height of the robot etc.

The robot is designed symmetrically, the front is virtual
and can be remapped on-the-fly. The current virtual front is
display using color LEDs embedded in servo-motors.

C. Virtual machine

In order to get user behaviours running on the robot, we
designed an application-specific virtual machine, that is able
to run on small micro-controllers (with no operating system).
This way, user code can be compiled to small binaries that
can be embedded and executed with a good control on
programs. This design was also proposed by [6], and used
in production on the Thymio robot[2].

Virtual machines also feature sand-boxing execution from
the robot firmware itself, avoiding errors such as illegal
memory access or locks. Access to hardware is done with
native functions, which can be called in the virtual machine
bytecode.

D. Programing environment

repeat (" £J| times

do. walk (@) mm ERIEEED at [EER)| mm/s

1ff to the right v

Fig. 3: An example of program and 3D view in the web
application.

A first obstacle in teaching programming is dealing with
theoretical (what is an algorithm?) and syntax (how do I
write my algorithm?) on the same time. A common way
to avoid this is using visual programming language, which
are similar to textual ones, with no syntax errors possible.
This field was investigated by the MIT, with StarLogo and
Scratch[7], which is today one of the most widespread.
This inspired App Inventor, an application designed by the
MIT and Google to design mobile applications. Google then
proposed Blockly[8], a library to design visual programming
languages. All these technologies are web-based, involving
Flash (Scratch) or JavaScript (blockly).

At this time, Blockly is the best choice for interfacing with
custom logics (i.e customizing blocks and code production).
It was designed with developers as first target, making it
more versatile and customizable, with a clear documentation.

Scratch is in first place an on-line education application,
which can be customized by writing extensions that can
add blocks which communicates through, for instance HTTP
requests with custom applications. However, it is not de-
signed to generate custom code, and for instance produce
an embeddable program for a robot. Blockly let access to
the “’parse tree”, which make any generation possible on the
top of the blocks scene. Moreover, Blockly have a great and
active community.

Having the application web-based allows a simplified
deployment, better portability and prone to upgrades. Curious
users can give a try to the environment just browsing the site.

Microcontroller

| Low level drivers

Communication
(Bluetooth)

ARM

cross-compiling

Binary protocol

Virtual machine

Motor
primitives

Virtual machine
assembler

JavaScript
cross-compiling
(emscripted)

Web application
3D Simulator

Fig. 4: The architecture of the robot software programming
environment.

An interesting point in the architecture is that code is
actually shared between the robot and the web simulator
(see figure 4). This is possible thanks to emscripten[9],
an LLVM-to-JavaScript compiler which allows to compile
native code (for example C/C++) to JavaScript. Thus, parts of
the robot firmware, virtual machine and bytecode assembler
can be embedded directly in the simulator available on
the web application. The 3D simulator takes advantage of
WebGL and three.js[10][11]. This allow consistent behaviour
between the simulated behaviour and reality.

Blockly allows to define custom blocks and code gener-
ation logics. In this case, we generate assembler code for
our custom virtual machine, which is then assembled to
bytecode.

The machine uses extensively stack to deal with variables.
An example is shown on Figure 5. Native methods are used
to do all the platform-specific operations, such as controlling
robot motion and retrieving information from sensors.

When these methods are called in the bytecode, the virtual
machine calls an user-defined method that can access the
stack, and then exchange data between the virtual machine
and the native world.

Multiple programs can be loaded in the virtual machine,
interacting with each others using global variables, and they
can contains multiple tasks. This makes concurrent execu-
tions possible, we introduced task blocks that can pause,
start and stop each others. An example, shown in figure 6, is
making the robot doing hexagonal path, and simultaneously

.thread

thread 0: pushf 4
repeat_0: load 0

dec

sto 0

load 0

testlz

jmpc repeat_end 0

repeat (")| times

jmp repeat_0
repeat_end_0: smash 1
stops

Fig. 5: An example of program and its assembler instruc-
tions. The robot_turn method is a native method in the robot
firmware, that takes as arguments the degrees (here 90) and
the speed (here 60 deg/s)

task initially started

do forward:)| mm/s, right: ('@ mm/s, turn: f@ °fs

wait (| gp) | milliseconds

forward: f’@ mm/s, right: [@ mm/s, turn:)| °/s
wéit(milliseconds

when [has obstacle when (not [has_obstacle

CW pause + |19 hexagon + [E1

do | EETR) the LT task

BN as_obstacle]

return (¢’
() [Front sensor | G0 EL1)

Fig. 6: A complete example containing loop, test, function,
threads and tasks control

detects obstacles, which will pause the main behaviour, and
resume it if the obstacle is no longer present. The blocks
that are not connected to the other ones are considered as
simultaneous threads that are run in the same time as the
others. This the case for the when block in the example.
Threads can also be named tasks, like hexagon from the
example, that can then be controlled.

To control the robot, we decided to provide both distance
and speed methods. Which mean that turning to the right
can be achieved with the ”turn to the right” block, but also
using “turn at 90deg/s” and “wait 1s” blocks. This allows
blocking and non-blocking calls, which are both useful in
different situations.

The programming environment offers the possibility to
load produced bytecode either on the simulator or on the
actual robot.

The simulator executes the bytecode on the virtual ma-
chine that is cross-compiled with emscripten, and reads
motor target angles to synchronize the 3D view. Robot moves

are simulated using dynamics parameters.

E. Mobile application

In order to control the robot, a mobile application was
developed. It allows to control the robot, but also to tune
the parameters and thus behave as a remote control taking
advantage of the bluetooth stack. The robot parameters can
also be changed to try different walks (see figure 7).

HEIGHT

[1 1] TOGGLE
—

ALTITUDE
CRAB LEVEL

LEGS RADIUS

22V e

Fig. 7: A screenshot of the mobile application screen that
can be used to tune the robot parameters

Another interesting feature of such an application is to
start and stop behaviours that were previously designed in the
web environment and loaded on the robot memory as virtual
machine bytecode. This makes the robot and its programs
usable without having a computer.

III. EDUCATION EXPERIENCE
A. Learning programming

Using a robot to learn programming is explained by the
concepts of tangible interfaces[12]. The robot helps the
transition from the material to the abstract world, but it is
also itself a motivating object.

The approach of the pupils toward the programming
environment is trial-and-error. This is encouraged by the
visual environment, because blocks can be found in a lateral
panel that acts as a library and is more intuitive than a
documentation.

Let’s explain a pedagogical example with a concrete
sequence of incremental questions.

First, we can ask the pupils to make the robot walking
following a square path, without giving them any advice or
documentation. Most of them will eventually use the robot
control blocks to make it do the path using a simple sequence
(go forward and turn right, copied/pasted four times).

We then explain them that they could use loops, making
them understand that they can do the same thing with less
blocks and in an easier way to change the program.

We then ask them to use speeds instead of distances. This
is a direct application of both cross multiplication and angles
(like turning at d degree per seconds during ¢ seconds). To
insist on this point, we ask them to follow an hexagonal path.

Another exercise, on the top of this, is to follow the
hexagon and pause when there is an obstacle, which can
introduce tasks and events, like depicted on figure 6.

Within this example, we introduced a few programing
principles like loops, functions and events.

This has been experimented in french secondary school
in Math and Technology courses for 4¢éme and 3eéme levels
(French cursus), which corresponds to 13 and 14 years old
pupils. In technology, pupils design the Metabot structure
and in Mathematics, they program it: At first, the teacher
introduces the Metabot programing interface; The initial
session consists in having the Metabot cover a square route
on the computer screen, after the relevant speed formula
has been explained. This first session enables the students
to grasp both the programing environment and the direct
practical utility of loops.

The next session rounds up the project, by requesting the
students to build up a full infinite loop, with the additional
challenge of having to keep two circles from overlapping.
As a rule, all the students get through this step successfully.

The following steps make it possible to master the various
functionalities of the robot (height, lighting of the leds...)
, the ultimate goal being to create tools that will eventually
intervene in the building up of more complex programs, as
required by the contest the students enter.

A specific session is devoted to a web search for the
interface commanding the robot via a mobile phone. The
technical challenge generates high motivation among groups.

B. Importance of competition

An important way to stimulate pupils on learning robotics
and programming is through competition[13]. One of the
most famous is indisputably the First LEGO League[14],
a competition mostly focused on constructions made with
LEGO blocks.

In the same scope, we started the Metabot League ini-
tiative, a competition involving Metabot robots (see figure
8).

Fig. 8: Poster announcing the Metabot League 2015

We proposed a dancing competition where the pupils had
to create a dance using the programing environment, they
could choose the music and customize the robot. This is an
interesting challenge, because it is not technically restrictive,
and resulted in an entertaining show (see figure 9).

Team sizes ranged from four to six people, aged from 12
to 16 years old.

IV. CONCLUSION

We experimented a legged robotics platform that suits
education purposes with good perspectives in that domain.

Fig. 9: A customized Metabot dancing during Metabot
League 2015.

Fig. 10: The Metabot League 2015 dance competition taking
place in the amphitheatre of an engineering school.

We noticed that the trial and error approach is a good way
to let pupils start using programming tool, and that a visual
programming environment is quickly handled and offers a
comprehensive view of what programming is to bootstrap
the lessons. We also encouraged them to participate to a
competition, which clearly motivated them to learn.

The platform is still under development, a new version will
be released, adding distance sensor and inertial measurement
unit (mainly for yaw estimation).

The hardware of such robots could evolve toward a more
powerful controllers, with promises of low-cost embedded
systems (like Raspberry Pi Zero[15]). This would allow
using actual programming language instead of custom virtual
machine, but also having more computation capabilities.

In future work, teaching material will be produced in order
to be able to teach with out-of-the box lessons. The program-
ing environment will also be enhanced, adding granularity in
the control of legs and motors, like for instance being able
to control the leg tips using (z,y, z) position.

REFERENCES

[1] C. N. Thai, “Actuator position control basics,” in Exploring Robotics
with ROBOTIS Systems. Springer, 2015, pp. 87-102.

[2] “Thymio, an educational robot with programming environment,” http:
/Iwww.thymio.org/.

[3] F. Riedo, M. Chevalier, S. Magnenat, and F. Mondada, “Thymio ii, a
robot that grows wiser with children,” in Advanced Robotics and its
Social Impacts (ARSO), 2013 IEEE Workshop on. 1EEE, 2013, pp.
187-193.

[4] M. Lapeyre, S. N’Guyen, A. Le Falher, and O. P.-Y., “Rapid morpho-
logical exploration with the poppy humanoid platform,” in Proceedings
of the 14th IEEE-RAS International Conference on Humanoid Robots
(Humanoids). 1EEE, 2014, pp. 959-966.

[51

[6]

[7]

[8]
[9]

[10]
(11]

[12]

[13]

[14]

[15]

B. Hengst, D. Ibbotson, S. B. Pham, and C. Sammut, “Omnidirectional
locomotion for quadruped robots,” in RoboCup 2001: Robot Soccer
World Cup V. Springer, 2001, pp. 368-373.

S. Magnenat, P. Rétornaz, M. Bonani, V. Longchamp, and F. Mondada,
“Aseba: A modular architecture for event-based control of complex
robots,” Mechatronics, IEEE/ASME Transactions on, vol. 16, no. 2,
pp. 321-329, 2011.

M. Resnick, J. Maloney, A. Monroy-Hernandez, N. Rusk, E. East-
mond, K. Brennan, A. Millner, E. Rosenbaum, J. Silver, B. Silverman,
et al., “Scratch: programming for all,” Communications of the ACM,
vol. 52, no. 11, pp. 60-67, 2009.

Google, “Blockly: a library for building visual programming editors,”
https://developers.google.com/blockly/.

A. Zakai, “Emscripten: an llvm-to-javascript compiler,” in Proceedings
of the ACM international conference companion on Object oriented
programming systems languages and applications companion. ACM,
2011, pp. 301-312.

R. Cabello, “Javascript 3d library,” https://github.com/mrdoob/three.js.
B. Danchilla, “Three. js framework,” in Beginning WebGL for HTMLS.
Springer, 2012, pp. 173-203.

P. Marshall, “Do tangible interfaces enhance learning?” in Proceed-
ings of the st international conference on Tangible and embedded
interaction. ACM, 2007, pp. 163-170.

A. Bredenfeld, A. Hofmann, and G. Steinbauer, “Robotics in education
initiatives in europe-status, shortcomings and open questions,” in
Proceedings of International Conference on Simulation, Modeling and
Programming for Autonomous Robots (SIMPAR 2010) Workshops,
2010, pp. 568-574.

D. Oppliger, “Using first lego league to enhance engineering education
and to increase the pool of future engineering students (work in
progress),” in Frontiers in Education, 2002. FIE 2002. 32nd Annual,
vol. 3. IEEE, 2002, pp. S4D-11.

“Raspberry pi zero: the $5 computer,” https://www.raspberrypi.org/
blog/raspberry-pi-zero/.

http://www.thymio.org/
http://www.thymio.org/
https://developers.google.com/blockly/
https://github.com/mrdoob/three.js
https://www.raspberrypi.org/blog/raspberry-pi-zero/
https://www.raspberrypi.org/blog/raspberry-pi-zero/

	INTRODUCTION
	ARCHITECTURE
	Hardware considerations
	Motion
	Virtual machine
	Programing environment
	Mobile application

	EDUCATION EXPERIENCE
	Learning programming
	Importance of competition

	CONCLUSION
	References

