
Learning the Odometry on a Small Humanoid Robot

Quentin Rouxel, Grégoire Passault, Ludovic Hofer, Steve N’Guyen, Olivier Ly

Abstract— Odometry is an important element for the localiza-
tion of mobile robots. For humanoid robots, it is very prone to
integration errors, due to mechanical complexity, uncertainties
and foot/ground contacts. Most of the time, a visual odometry
is then used to encompass these problems. In this work we
propose a method to compensate for odometry drifting using
machine learning on a small size low-cost humanoid without
vision. This method is tested on different ground conditions and
exhibits a significant improvement in odometry accuracy.

I. INTRODUCTION

Walking on uneven terrains is still an interesting challenge
for humanoid robotics.

Our work is located in the context of the RoboCup
competition, aiming at producing robots with human-like
soccer level. Robots of humanoid leagues now have to walk
on artificial grass. Along with the difficulties in walking and
stabilizing on this kind of “soft” ground, artificial grass also
causes more foot/ground slip and posture errors leading to
more odometry errors.

The well known question of odometry – also named
dead reckoning estimation – has been extensively studied
on wheeled mobile robots. Kinematic models are built to
summarize all known physical imperfections leading to
systematic displacement errors. Open parameters are then
calibrated with various geometrical [1] or statistical [2]
approaches.

This process is far more difficult on humanoid robots – and
in particular for low-cost humanoid robots – as in addition to
foot slippery, ground contact constantly switches from single
to double support foot phase and ground collisions are af-
fecting the overall dynamics. Moreover, complex mechanical
systems can never be perfect, especially in low-cost robots,
making error modeling even more difficult.

This is why many recent methods are relaying on visual
odometry estimated from robot’s camera. In [3] a vision-
based odometry is computed in real time using Simultaneous
Localization and Mapping (SLAM) and Extended Kalman
Filter (EKF) algorithms on a human sized robot. In [4]
SLAM and an EKF are also used on a Nao robot, with the
dead reckoning making use of Nao’s pressure Force-Sensing
Resistor (FSR) sensors to improve the support foot choice,
which greatly influence the estimation accuracy.

An accurate a priori and online odometry is an essential
basis for planning and robot navigation applications. For ex-
ample, in [5], robot trajectories are planned (with classic A∗

The authors are with the Rhoban team, LaBRI, Univer-
sity of Bordeaux, France. Emails: {quentin.rouxel,
gregoire.passault, ludovic.hofer,
steve.nguyen, olivier.ly}@labri.fr

and Markov Decision Process (MDP) framework) relaying
on visual feature tracking to compensate for motion drift.

Visual odometry needs high computational power to ana-
lyze the camera information (which may be an obstacle for
small robot embedded computers), is sensible to lighting and
usually requires controlled environment conditions. Some
works have tried other non visual sensors such as [6] which
allows to correct odometry by measuring unwanted slippery
with computer mice optical sensors placed on each foot.
In [7] lasers where used for scanning the ground, helping
SLAM localization in addition of foot contact sensors on an
adult sized (non low-cost) robot.

Finally, quite a few works have proposed the use of regres-
sion techniques to improve odometry accuracy. On wheeled
robots for instance, Angelova et al. [8] achieves to predict
robot slippery from visual information on a planetary rover
in a complex environment by using the machine learning
Locally Weighted Projection Regression (LWPR) technique.
On humanoid robots, Schmitz et al. [9] used a motion capture
setup to learn the prediction of the next footstep in order to
improve the control of a Central Pattern Generator (CPG)
based walk engine. However, no odometry on the long run
is presented and only an a priori (no sensor-based) footsteps
prediction is learned.

In this work we propose a purely “internal” odometry
system, i.e. without vision or laser sensor. Such a system is
intended to be included as a component into a more global
localization system, which in turn may include high level
methods like vision or laser sensor.

We present a comprehensive comparison of an a priori and
online odometry estimation using footsteps learning on both
thin carpet and soft artificial grass. We then test the influence
of both fully open-loop and simple closed-loop walk engine
thanks to new low-cost foot pressure sensors mechanical
integration. Using a kinematic model and fast prediction
of learned regressions, operational real computation time is
reached on the robot’s embedded computer.

II. HUMANOID PLATFORM

A. Sigmaban Robot

Sigmaban [10] is a small and low-cost humanoid platform.
The robot is 54cm height, weights 3.8Kg and has 20 degrees
of freedom ; 6 per leg, 3 per arm and 2 for the head. The
actuators are Dynamixel RX servo-motors with about 0.3◦

position encoder resolution. Finally, the main Central Pro-
cessing Unit (CPU) is a small Intel Atom 1.6GHz processor.

A webcam is mounted on the head, providing visual
feedback and an Inertia Measurement Unit (IMU) is giv-
ing accelerometers, gyroscopes and filtered pitch and roll

Fig. 1: On the left side, Sigmaban Kid-Size Humanoid
Robot. On the right side, low-cost foot pressure sensors made
of 4 strain gauges and measuring weight put on each cleat.
This mechanical assembly is robust and well adapted to soft
artificial grass, improving the stability of the robot

orientation. According to the RoboCup Humanoid league
restrictions, the sensors of the robot are constrained to be
"human possible". Therefore, we do not use 3D camera nor
distance sensor.

Let us note that the small size of the robot makes ex-
periments easier since the robot is more robust and can
fall without breaking itself and without being dangerous for
operators.

The robot is also equipped with foot pressure sensors1

presented in [11] and detailed in [12] (see Fig. 1). Each
foot has 4 cleats attached to small strain gauges which,
once properly calibrated, allows us to measure foot contact
forces on these 4 points. In our system the strain gauges
are parts of the mechanical structure allowing to directly
measure the foot deformations. This configuration alleviates
the usual sensor/ground contact problems encountered when
using other cheap sensors such as Force-Sensing Resistor
(FSR). We can then compute the robot’s weight on each
foot along with an estimation of the center of pressure.

B. Walk Engine

The robot gait is controlled by the walk engine, mainly
based on open-loop parametrized splines2. The walk en-
gine controls the 12 servo-motors of the legs via inverse
kinematics. Reference foot and trunk trajectories are defined
in Cartesian (x, y, z) space using polynomial cubic splines.
These splines are parametrized by a set of parameters such
as the walk frequency, forward and lateral footstep length,
footstep rotation angle, height of foot rise, height of the trunk
from the ground, phase and amplitude of the trunk lateral
oscillation, trunk pitch. . . Joints reference positions are then
computed via inverse kinematics and sent to servo-motors.
The walk scheme assumes no double support phase.

1 Open source project available at https://github.com/Rhoban/
ForceFoot

2 Open source project available at https://github.com/Rhoban/
IKWalk

The robot walking direction and velocity are controlled
by adjusting the 3 dynamic parameters: footstep forward
and lateral length, in addition to footstep rotation angle (gait
commands). Mixing these inputs determines the foot position
for the next step and therefore allows for an omni-directional
motion. Note that these parameters are only updated on
foot support exchange. All other parameters remain fixed
during the walk sequences. They have been manually tuned
by experiment to optimize robot’s stability and speed on
artificial grass.

On top of the open-loop motion, we added a simple closed-
loop strategy in order to improve walk stability. A major
cause of destabilization is the small desynchronizations be-
tween robot’s dynamics and the open-loop timing. By using
the foot pressure sensors to measure the weight distribution
on each foot, the walk engine pauses the open-loop cycle
when the foot about to rise has still a significant amount of
weight on it. Doing so, it enforces a time-resynchronization
between the model and the reality.

This walking scheme was used by the Sigmaban robots
of the Rhoban Football Club team at Humanoid KidSize
RoboCup 2015 competition in China.

 0

 20

 40

 60

 80

 47 47.5 48 48.5 49

A
n

g
u

la
r

p
o
si

ti
o
n

 (
d

e
g

re
e
s)

walk time (seconds)

left knee position
left knee goal

left hip roll position
left hip roll goal

Fig. 2: Servo-motors control errors. Comparing left knee
and left hip pitch reference positions to the read positions
from encoders. In addition to the time lag, a max error of 3
to 5 degrees can be observed.

C. Robot Model
From the assembly of a Computer Assisted Design soft-

ware, a complete dynamic model3 has been created allowing
for accurate geometric calculations. The model is represented
as two kinematic trees whose roots are located on each
foot of the robot. The used kinematic tree is imposed by
the current support foot. Each time the current support
foot is switched, the model is updated and the old flying
foot becomes the new support foot. The odometry is then
estimated by integrating the robot’s head4 position over time.

The model can then be updated in two ways. Without
sensor, all the degrees of freedom goal positions are assigned

3 The standard Unified Robot Description Format (URDF) export format
is used

4 The head is chosen to be the reference frame of the robot position
because the motion capture reflective markers are placed on the robot’s
head

https://github.com/Rhoban/ForceFoot
https://github.com/Rhoban/ForceFoot
https://github.com/Rhoban/IKWalk
https://github.com/Rhoban/IKWalk

to servo-motors reference positions generated by the walk
engine. The support foot is switched when the height of the
flying foot about to land, goes below the floor level. In this
manner, the robot’s odometry can be simulated given the
walk engine inputs.

When using sensors, all the degrees of freedom positions
are set to the measured joint encoders. Then, the support
foot is determined by the pressure sensors to be the foot
measuring the more weight. The robot’s yaw orientation
is computed by integrating the raw yaw gyroscope which
has proven to be more accurate than the integration of the
kinematic model rotations. In addition to the mechanical
backlash, when walking on soft surface such as artificial
grass, the foot may not lie flat. Filtered measured pitch and
roll from the IMU placed on the trunk are assumed to be
correct. A rotation is then applied between the support foot
and the ground in order for the trunk to match the measured
orientation.

III. ODOMETRY LEARNING

The absolute Cartesian position of the robot over time can
be estimated in two major ways, a priori or online i.e. by
taking into account only gait commands, equivalent to motor
reference positions, or by using robot’s sensors measured
from the environment. In the first case, no actual physical
action is needed, allowing to simulate future estimated posi-
tions given future gait commands. In the second case, sensors
have to be recorded all along the traveled trajectory. The
latter is expected to be obviously more accurate but can not
be used for planning purposes.

The kinematic model of the robot is fed either with the
motor goal positions or the complete measured sensors. In
this way, it is able to compute the a priori or the online
estimation of the robot’s head odometry. In the following, a
machine learning approach is proposed in order to improve
the accuracy of these basic methods. During experiments, the
ground truth absolute robot position is provided by a motion
capture system.

A. Footstep Displacements

Lateral displacement

Forward displacement

Turn rotation

X

Y

X
Y

Position at support foot swap t

Position at support foot swap t+1

Fig. 3: Footstep displacement calculations on support foot
swap

Instead of trying to predict the instantaneous velocity
of the robot trajectory which is prone to high noise, we
compute the difference of the robot’s head pose between
two consecutive support foot swaps. In addition, since the
walk engine commands (forward and lateral step lengths, foot
rotation) are only updated on support swap, same footsteps
are expected to result in repeatable displacements.

During one walk cycle, two support foot swaps occur.
Each time, the forward and lateral displacement, the angle
rotation from the last support swap are computed in the
robot’s own reference frame as depicted on Fig. 3. Footstep
displacements are calculated for both the left and right feet
from the ground truth robot position, sensor-based odometry
and simulation-based odometry.

B. Data Set

During learning experiments, a new data point is gen-
erated at each support foot swap time t. Each recorded
data point contains the ground truth footstep displace-
ments ∆(x, y, θ)t, truth, the expected displacement from
gait commands ∆(x, y, θ)t, simulation based and the dis-
placement computed by the model from robot’s sensors
∆(x, y, θ)t, sensor based.

C. Learning with LWPR

The next phase is to learn to predict the ground truth
footsteps with the odometry footsteps as input and so to build
a corrective function improving the estimation precision.
Without knowing the structure of the function to learn, we
decided to use the Locally Weighted Projection Regression
(LWPR) algorithm.

LWPR is a state of the art non parametric and non linear
regression method (supervised learning) allowing for a fast
prediction and incremental learning ([13]).

The input space is incrementally divided in several recep-
tive fields in which a Partial Least Square (PLS) algorithm
locally reduces the input space dimension and fits a linear
model. Predictions are computed by averaging all local mod-
els weighted by the distance from each receptive field to the
query point. Another state of the art non parametric family of
regression algorithms are based on Gaussian Processes (GP).
Even if the overall accuracy and convergence speed of GP
are better ([14] compares LWPR with classic GP and with a
proposed hybrid method), LWPR is the fastest technique for
learning and prediction runtime.

LWPR has been chosen for its computational performance
with the need of real time prediction on the small embedded
robot’s computer.

For both learning cases, 3 LWPR models are used to
predict at support foot swap time t, the ground truth forward
∆xt, truth, lateral ∆yt, truth and angle rotation ∆θt, truth

footstep displacements. This is a simplification ; the three
ground truths ∆xt, truth,∆yt, truth,∆θt, truth are assumed
to be independent given the inputs.

The simulation-based odometry learning only uses gait
commands as input. For each three ground truth displacement
predictions, an independent function R7 −→ R1 is learned:

∆(x, y, θ)t, simulation based

∆(x, y, θ)t−1, simulation based

support_foot t, simulation based

7−→ ∆xtruth

The sensor-based odometry, on the contrary, uses robot’s
sensors. The three learned functions R9 −→ R1 have the
following inputs:

∆(x, y, θ)t, sensor based

∆(x, y, θ)t−1, sensor based

support_foot t, sensor based

step_duration t, sensor based

step_duration t−1, sensor based

7−→ ∆xtruth

To take into account dynamical effects such as robot’s
accelerations, regressions are given an history of the last two
footstep displacements as input as well as a binary variable
indicating the current support foot. Since actual measured
footsteps are not really periodic (especially on closed-loop
walk engine), sensor-based odometry regressions are also
given the step durations as input.

D. Overall Architecture

Motion Capture Foot Pressure IMU

Motor Goals

Motor Positions

Walk Engine

Humanoid Model

Footstep Differentiator Footstep Differentiator

Footstep Integrator

LWPR
Regression

Odometry Simulation

Walk Orders

Odometry Sensors

Odometry Learned
from Sensors

LWPR
Regression

Footsteps Truth

Footsteps Sensors

Humanoid Model

Footstep Differentiator

Footsteps Simulation

Robot Controls

Footsteps Predicted
from Sensors

Footsteps Predicted
from Simulation

Footstep Integrator

Odometry Learned
from Simulation

Robot SensorsExternal
Sensors

Closed loop

Learning reference

Fig. 4: System architecture. Ellipses represent values and
rectangles represent abstract functions. All odometry estima-
tions (red) are compared with ground truth motion capture.

Finally, Fig. 4 shows the global system architecture.
Data are represented flowing from robot’s internal sensors,
external sensors and gait controls to the several odometry
estimations. The walk engine is taking pressure sensors as
input in the closed-loop version. After being predicted from

the sensor-based and simulation-based odometry by LWPR
regressions, footsteps are re-integrated (inverse operation
than illustrated in Fig. 3) to get the corrected odometry
estimate.

IV. RESULTS

A short video can be found along with this paper and
briefly presents the experimental setup and its results5.

A. Experimental Setup

Fig. 5: The motion capture area on artificial grass (30mm
thick) field and Sigmaban humanoid robot with reflective
markers on the head

These experiments will compare results obtained on a
regular smooth ground (a thin carpet) and a soft irregular
ground (artificial grass of about 30mm thick)6.

Each experiment run is composed of 4 or 5 walk sequences
of about 5 minutes each. The walk engine is manually
driven by a joystick controlling forward, lateral step length
and rotation. The robot position is constrained to remain
within the capture area while exploring the walk input
space, mixing forward, lateral and turn gait commands. Walk
stability is manually ensured by keeping gait commands and
accelerations in acceptable range preventing the robot from
falling.

During the experiments, the pose (position and orientation)
of the robot’s head is tracked by an external motion capture
system7 providing the absolute Cartesian pose in world frame
at a frequency of 100Hz (see Fig. 5). All motor encoders,
pressure sensors, gyroscopes and accelerometers are recorded
at 50Hz.

B. Validation and Results

1) Computing Performances: Since no vision is used
for the odometry calculations, good computation time

5 The video is also available at: https://youtu.be/9HT33KMtfLw
6 This is compliant to the RoboCup Humanoid KidSize League new

rules introduced in 2015 (see https://www.robocuphumanoid.
org/materials/rules/). This new constraint, from thin carpet to a
soft ground, is a step toward Robotics soccer games against humans but
also makes the biped walk much harder to stabilize.

7 Six OptiTrack infrared cameras are used

https://youtu.be/9HT33KMtfLw
https://www.robocuphumanoid.org/materials/rules/
https://www.robocuphumanoid.org/materials/rules/

Main control loop (50Hz) : 10.5ms

Walk Engine: 0.36ms

Logging Data: 1.6ms

Odometry evaluation: 8.3ms

Model Geometric Computation: 2.8ms

LWPR prediction: 5.2ms

Fig. 6: Average computing time on robot’s embedded CPU

can be reached on the embedded computer of the robot.
LWPR regression allows for fast incremental learning
and prediction time on the small Atom 1.6GHz robot’s
processor. Average computing time are depicted in Fig. 6.
The whole code is implemented in C++. LWPR authors’
implementation8 is used for the regressions and the Rigid
Body Dynamic Library (RBDL)9 is used for all geometric
and kinematic model computations.

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0.02

 0.022

 0.024

 0.026

 0.028

 0 50 100 150 200 250 300

Fo
rw

a
rd

 f
o
o
ts

te
e
p
 d

is
p
la

ce
m

e
n
t

e
rr

o
r

(m
e
te

rs
)

Learning set time length (seconds)

sensors
predicted from sensors

simulation
predicted from simulation

Fig. 7: Average distance between estimated footstep dis-
placement in the robot’s forward direction (x) and measured
ground truth. Comparison of footstep displacements com-
puted from motors goals (violet) and sensors (red) versus
regression predictions (green and blue) under different learn-
ing time durations. Error bars give 95% confidence intervals
evaluated from 5 logs.

2) Learning Convergence: These first results take place
on artificial grass with a fully open-loop walk engine. 5
walk sequences from 345 seconds to 471 seconds long are
recorded using the same motion capture setup. The first
data log is divided in two sequences. The first half is used
for LWPR regression as a learning set and the second half
is used as a test set for tuning algorithm’s meta parameters.
Learned regressions are then applied to the 4 other logs.

Fig. 7 shows the convergence of prediction errors of
LWPR regression compared with non-learning odometry ap-
proaches. For each data log, a learning sequence is extracted
and regressions are trained. Then, footstep displacements are

8 http://wcms.inf.ed.ac.uk/ipab/slmc/research/
software-lwpr

9 https://bitbucket.org/rbdl/rbdl

predicted on the remaining part of the log and the mean error
between predicted footstep time series and recorded ground
truth is computed.

Approximately two minutes of walk exploration of the
footsteps space is needed to converge. Here, 120 seconds of
learning sequence represents about 400 data points, since the
walk frequency is 1.7Hz and that one walk cycle is composed
of two steps. LWPR inspection reveals that the number of
receptive fields used by the regressions is small, ranging only
from 1 to 5 for the most complex function (rotation). This
indicates that the learned function must be quite simple and
almost linear ; explaining the little learning time.

The comparison between footstep displacements predicted
from sensor-based and predicted from simulation-based
odometry on Fig. 7 validates that measured displacements are
better fitted by the regression using robot sensors as inputs
than only gait commands simulation.

Note that a small footstep displacements error does
not necessarily imply a good odometry tracking since a
large error on left footstep could be compensated with a
large opposite error on right footstep during displacement
integration.

3) Comparison on Mid Term Trajectories: Once the foot-
step displacements are computed, the test logs are divided
into non overlapping sequences of 20 seconds and the
resulting odometry is reset and integrated over each small
sequence. Some simple typical robot trajectories comparing
the four methods are depicted in Fig. 8.

The odometry estimation from gait commands simulation
is highly underestimating distances. Walk engine commands
are directly linked to motor orders through inverse kine-
matics, but the purely feedback control algorithm of RX
Dynamixel servo-motors (proportional controller) is unable
to follow the desired joint trajectory under a such dynamic
movement (see Fig. 2). Due to leg inertia, actual robot’s steps
are thus longer than expected. Note that our open-loop walk
engine is tuned from its origin to deal with this behavior.

In a lesser way, the sensor-based odometry is also under-
estimating distances even when reading the motor position
encoders. This is the result of some non measurable mechan-
ical backlash increasing the real amplitude of the steps.

The relatively small length of the walk sequences (20s)
used here is chosen in order to avoid statistical flukes on
the odometry. This is explained by the small motion capture
area (roughly a rectangle of 1.5 by 2 meters). Since the
model odometry (without learning) underestimates distances
but keeps a quite good orientation, when the robot goes
back and forth (exploring footstep space), it often catches up
the ground truth position by pure chance, which statically
overestimates the odometry quality.

Finally, statistical results on Fig. 9 compare the overall
odometry error of the four methods still using an open-
loop walk engine on the artificial grass surface. In both
sensor-based and simulation-based approaches, the learning
technique significantly improves the odometry precision.

http://wcms.inf.ed.ac.uk/ipab/slmc/research/software-lwpr
http://wcms.inf.ed.ac.uk/ipab/slmc/research/software-lwpr
https://bitbucket.org/rbdl/rbdl

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

W
o
rl

d
 p

o
si

ti
o
n
 y

 (
m

e
te

rs
)

World position x (meters)

motion capture (ground truth)
predicted from sensors

sensors
predicted from simulation

simulation

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4

W
o
rl

d
 p

o
si

ti
o
n
 y

 (
m

e
te

rs
)

World position x (meters)

motion capture (ground truth)
predicted from sensors

sensors
predicted from simulation

simulation

Fig. 8: The four odometry methods compared with mo-
tion capture measured ground truth on two typical walk
sequences. The integrated robot’s head trajectory is shown
over a walk time length of 20 seconds starting from the
origin (0, 0) position. Forward steps, lateral steps and turn
walk inputs are mixed. Due to control errors, a stationary
or slightly negative forward order may results in a forward
motion. On both trajectory beginnings, actual stationary
turn is performed, misleading the simulation-based odometry
which integrates backward displacements.

Since angular error computed from the model odometry is
based on raw gyroscope integration, which is already fairly
good with low drift on such time scale, learning technique
only makes little gain.

Note that an important feature of simulation-based
odometry is that it can be fully computed a priori, without
any sensor feedback. Which means that before actually
moving, the robot is able to predict its resulting position
given a sequence of future walk engine inputs. Given the
fact that due to the low-cost servo-motors control issues,
raw kinematic footstep commands cannot be trusted. Then,
the learning approach greatly enhance the prediction quality.
This is an advantage for medium-term navigation planning
(about 20s).

4) Ground Surfaces and Open/Closed Loop Comparison:
Lastly, we compared the odometry quality on 4 different
setups: artificial grass and carpet with open-loop and closed-
loop walk engines.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14 16 18 20

M
e
a
n
 c

a
rt

e
si

a
n
 d

is
ta

n
ce

 e
rr

o
r

(m
e
te

rs
)

Walk sequence time (seconds)

sensors
predicted from sensors

predicted from simulation
simulation

 0

 10

 20

 30

 40

 50

 60

 70

 0 2 4 6 8 10 12 14 16 18 20

M
e
a
n
 a

n
g
u
la

r
d
is

ta
n
ce

 e
rr

o
r

(d
e
g
re

e
s)

Walk sequence time (seconds)

sensors
predicted from sensors

predicted from simulation
simulation

Fig. 9: Average distance of Cartesian and angular odometry
from ground truth. Comparison of the four odometry meth-
ods statistics from 58 walk sequences of 20 seconds. Error
bars give 95% confidence intervals on average.

Since the new RoboCup Humanoid rules (2015) intro-
duced the artificial grass for soccer field, we compared
this surface with the previous one, a thin carpet. The soft
grass surface mainly tends to make the walk less stable and
requires that the robot rises the flying foot higher due to grass
frictions. The walk stability is thus ensured by decreasing the
walk speed and switching from flat feet to adding 4 cleats
integrated with pressure sensors.

Notice that the used walk engine parameters are the same
in both conditions but the walk has been tuned for artificial
grass. In addition, foot’s cleats are clearly more adapted to
the grass than to the carpet.

Odometry quality comparison on these setups is shown
on Fig. 10. For each setup, 4 or 5 walk logs of about 5
minutes long are recorded. Learning takes place on the first
log and statistics on small sequences of 20 seconds are then
computed on other test logs. Several comments can be made:

• To begin, both simulation-based and sensor-based
odometry errors are reduced by using a simple closed-
loop walk engine over a fully open-loop one. One
possible interpretation is that a more reactive control
leads to a more stable gait, reducing the displacement
noise affecting the robot trajectory when the system gets
temporarily unstable.

• Then, switching from a carpet surface to a soft artificial
grass increases simulation-based odometry errors but
does not affect sensor-based odometry. This is a clue
that due to grass friction on flying foot, the actual
footstep displacements may be altered. Thus, not using
the environment feedback increases the odometry errors.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 2 4 6 8 10 12 14 16 18 20

M
e

a
n

 c
a
rt

e
s
ia

n
 d

is
ta

n
c
e

 e
rr

o
r

(m
e

te
rs

)

Walk sequence time (seconds)

Grass -- Open Loop Walk

sensors
predicted from sensors

predicted from simulation
simulation

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 2 4 6 8 10 12 14 16 18 20

M
e

a
n

 c
a
rt

e
s
ia

n
 d

is
ta

n
c
e

 e
rr

o
r

(m
e

te
rs

)

Walk sequence time (seconds)

Grass -- Closed Loop Walk

sensors
predicted from sensors

predicted from simulation
simulation

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 2 4 6 8 10 12 14 16 18 20

M
e

a
n

 c
a
rt

e
s
ia

n
 d

is
ta

n
c
e

 e
rr

o
r

(m
e

te
rs

)

Walk sequence time (seconds)

Carpet -- Open Loop Walk

sensors
predicted from sensors

predicted from simulation
simulation

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 2 4 6 8 10 12 14 16 18 20

M
e

a
n

 c
a
rt

e
s
ia

n
 d

is
ta

n
c
e

 e
rr

o
r

(m
e

te
rs

)

Walk sequence time (seconds)

Carpet -- Closed Loop Walk

sensors
predicted from sensors

predicted from simulation
simulation

Fig. 10: Comparison of odometry error using closed-loop and open-loop walk engines and artificial grass and carpet surfaces.
Each comparison is made of 45 to 72 walk sequences of 20 seconds.

On contrary, sensor-based odometry, taking into account
motor encoders and sensors is not significantly affected
by the grass.

• Finally, the errors of odometry predicted without sen-
sors are higher using a closed-loop walk engine than
using open-loop walk. By using a closed-loop walk,
the actual motor orders and hence the footsteps are
dependent of robot’s sensors. The prediction of real
footstep displacements from only gait commands is
obviously lacking information to accurately fit the walk
behavior. Using a closed-loop walk engine, the robot is
more stable and non-learning approaches are more accu-
rate than with open-loop but simulation-based odometry
learning gets less precise as the robot movement is now
depending on its sensors.

V. CONCLUSIONS AND FUTURE WORKS

In this paper we have demonstrated the possibility to use
a machine learning technique to significantly enhance the
internal odometry estimation on both simulation and online
conditions of a small humanoid robot. On artificial grass and
using an open-loop walk engine, the average online sensor-
based odometry drift has been improved from 24.5cm to
10.3cm and the average off-line simulation-based odometry
drift has been reduced from 62.0cm to 14.8cm after 10
seconds of walking.

This method has been compared in different setups, on
a thin carpet and on soft artificial grass, with and without
closed-loop correction. As expected, results indicate that the
grass surface increases the average odometry error compared
with the carpet, since the robot is destabilized by the soft
ground and frictions. Moreover, the closed-loop walk engine
tends to reduce the odometry error of non-learning methods
(simulation and online using sensors) compared to the simple
open-loop walk.

This work aims at improving the classic internal odometry
component usually used in combination with external sensors
such as vision or laser rangefinder in order to compute the
localization of the robot. We thus expect an improvement in
our localization system based on the integration by a particle
filter of the odometry with monocular vision.

Since the drift of the simulation-based method has been
significantly reduced by learning, the natural extension of this

work is to use the improved prediction accuracy to develop
enhanced mid-term step planning and navigation techniques.

REFERENCES

[1] J. Borenstein and L. Feng, “Measurement and correction of systematic
odometry errors in mobile robots,” Robotics and Automation, IEEE
Transactions on, vol. 12, no. 6, pp. 869–880, 1996.

[2] A. Kelly, “Fast and easy systematic and stochastic odometry calibra-
tion,” in Intelligent Robots and Systems, 2004.(IROS 2004). Proceed-
ings. 2004 IEEE/RSJ International Conference on, vol. 4. IEEE,
2004, pp. 3188–3194.

[3] S. Ahn, S. Yoon, S. Hyung, N. Kwak, and K. S. Roh, “On-board
odometry estimation for 3d vision-based slam of humanoid robot,” in
Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International
Conference on. IEEE, 2012, pp. 4006–4012.

[4] G. Oriolo, A. Paolillo, L. Rosa, and M. Vendittelli, “Vision-based
odometric localization for humanoids using a kinematic ekf,” in
Humanoid Robots (Humanoids), 2012 12th IEEE-RAS International
Conference on. IEEE, 2012, pp. 153–158.

[5] S. Osswald, A. Hornung, and M. Bennewitz, “Learning reliable and
efficient navigation with a humanoid,” in Robotics and Automation
(ICRA), 2010 IEEE International Conference on. IEEE, 2010, pp.
2375–2380.

[6] S. Czarnetzki, M. Hegele, and S. Kerner, “Odometry correction for
humanoid robots using optical sensors,” in RoboCup 2010: Robot
Soccer World Cup XIV. Springer, 2011, pp. 48–59.

[7] J. Chestnutt, Y. Takaoka, K. Suga, K. Nishiwaki, J. Kuffner, and
S. Kagami, “Biped navigation in rough environments using on-
board sensing,” in Intelligent Robots and Systems, 2009. IROS 2009.
IEEE/RSJ International Conference on. IEEE, 2009, pp. 3543–3548.

[8] A. Angelova, L. Matthies, D. Helmick, G. Sibley, and P. Perona,
“Learning to predict slip for ground robots,” in Robotics and Au-
tomation, 2006. ICRA 2006. Proceedings 2006 IEEE International
Conference on. IEEE, 2006, pp. 3324–3331.

[9] A. Schmitz, M. Missura, and S. Behnke, “Learning footstep prediction
from motion capture,” in RoboCup 2010: Robot Soccer World Cup
XIV. Springer, 2011, pp. 97–108.

[10] R. Fabre, H. Gimbert, L. Gondry, L. Hofer, O. Ly, S. N’Guyen,
G. Passault, and Q. Rouxel, “Rhoban football club team – description
paper,” in Humanoid KidSize League, Robocup 2015 Hefei, 2015.

[11] G. Passault, Q. Rouxel, L. Hofer, S. N’Guyen, and O. Ly, “Low-
cost force sensors for small size humanoid robot,” in 2015 IEEE-RAS
International Conference on Humanoid Robots (Video contribution),
accepted.

[12] Q. Rouxel, G. Passault, L. Hofer, S. N’Guyen, and O. Ly, “Rhoban
hardware and software open source contributions for robocup hu-
manoids,” in Proceedings of 10th Workshop on Humanoid Soccer
Robots, IEEE-RAS Int. Conference on Humanoid Robots, Seoul, Korea,
2015.

[13] S. Vijayakumar, A. D’souza, and S. Schaal, “Incremental online
learning in high dimensions,” Neural computation, vol. 17, no. 12,
pp. 2602–2634, 2005.

[14] D. Nguyen-Tuong and J. Peters, “Local gaussian process regression
for real-time model-based robot control,” in Intelligent Robots and
Systems, 2008. IROS 2008. IEEE/RSJ International Conference on.
IEEE, 2008, pp. 380–385.

	Introduction
	Humanoid Platform
	Sigmaban Robot
	Walk Engine
	Robot Model

	Odometry Learning
	Footstep Displacements
	Data Set
	Learning with LWPR
	Overall Architecture

	Results
	Experimental Setup
	Validation and Results
	Computing Performances
	Learning Convergence
	Comparison on Mid Term Trajectories
	Ground Surfaces and Open/Closed Loop Comparison

	Conclusions and Future Works
	References

