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Definition
Odometry (dead reckoning): estimating the
position by integrating displacements over time.
Displacements can be estimated:
– from sensors (motor encoder, IMU, vision, ...)
– from future controls (simulation)

Abstract
– uses no vision (only internal sensors)
– is real time (≈10ms)
– improves accuracy using machine learning
– compares 4 odometry methods
– compares 2 ground surfaces (carpet, grass)

and 2 walk engines (open, closed loop)
– will improve absolute localization on football

field during Robocup competition

Sigmaban Humanoid Platform

Humanoid Robot. 20 degrees of freedom (6 per
leg, 3 per arm, 2 on the head) Dynamixel servo-
motors. Position encoders, webcam, IMU (ac-
celerometers, gyroscopes), foot pressure sen-
sors. Small 1.6GHz embedded processor.
54cm height, weights 3.8Kg. Learning experi-
ments are easier on small robots than tall ones.

Robots are Playing Football

The Robocup: annual international robotics
competition (3000 participants). Humanoid Soc-
cer, Wheeled Soccer, Rescue, Home, . . .
Why football is an interesting and difficult
challenge for robots ?
– Benchmark for state of the art algorithms
– Mechanics, electronics, software robustness
– Real time vision in complex conditions
– Locomotion and motor control speed, adapt-

ability and stability
– Navigation and path planning
– Adversarial game in partially observable

noised environment
– Small and low cost robots have inaccurate

mechanics, controls and models but are still
deterministic

The Rhoban Football Club won the third
place in Humanoid KidSize Soccer League at
Robocup 2015 in China.
Good odometry estimate⇒ accurate robot’s lo-
calization on field

Learning Footsteps with LWPR Regression

Footsteps: robot’s head displacements
(forward x, lateral y, rotation θ) between
two support foot swap.

2 classic odometry estimations:
– Method 1: simulation based odom-

etry: integration of forward kinemat-
ics motion fed only with motor refer-
ence positions (no sensor)

– Method 2: sensors based odome-
try: integration of forward kinematics
motion fed with measured motor en-
coders, IMU and foot pressure (se-
lecting support foot)

2 learning odometry estimations:
– Method 3: learned from simulation

odometry: ground truth footstep dis-
placements are predicted from simu-
lation based footsteps

– Method 4: learned from sensors
odometry: ground truth footstep dis-
placements are predicted from sen-
sors based footsteps

Sensors based regression models:
3x(R9 −→ R1)
Simulation based regression models:
3x(R7 −→ R1)
Learning uses LWPR non linear non
parametric regression.
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

∆(x, y, θ)t, sensor based

∆(x, y, θ)t−1, sensor based

support_foot t, sensor based

step_duration t, sensor based

step_duration t−1, sensor based

7−→ ∆xtruth


∆(x, y, θ)t, simulation based

∆(x, y, θ)t−1, simulation based

support_foot t, simulation based

7−→ ∆xtruth

Experimental Comparisons and Results
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– Learning convergence: about 2-3 minutes of
walk exploration

– Test on 60 walk sequences of 20 seconds
⇒ On artificial grass and using an open loop walk,
average drift error improvements using learning:
sensors based: 24.5cm→ 10.3cm
simulation based: 62.0cm→ 14.8cm
Comparison: soft artificial grass vs. thin carpet,
fully open vs. simple closed loop walk engine.
– Carpet→ artificial grass⇒ more motion noise
– Open loop→ Simple closed loop⇒ walk stabi-

lization
– Closed loop walk⇒ no good prediction without

sensor
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Conclusion and Beyond

– Learning improves both off-line simulation
and online sensors based odometry.

– Off-line odometry will improve planning
– Real time online odometry will improve local-

isation
⇒ Odometry is an essential basis for planning
and navigation.
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