

An Operational Method Toward Efficient Walk Control Policies for Humanoid Robots

Ludovic Hofer, Quentin Rouxel

ludovic.hofer@labri.fr, quentin.rouxel@labri.fr

Université BORDEAUX

Problem Definition

Humanoid robots playing soccer

Displacement Model Learning

- Large discrepancies between walk orders and actual displacement
- Use data to learn corrective linear model
- No need for external hardware

 $\Delta(x, y, \theta)_{\text{walk orders}, k} \mapsto \Delta(x, y, \theta)_{\text{corrected}, k}$ Compare different linear models:

MDP RFPI Solver

The CSA-MDP learner algorithm:

- 1: $\pi = getRandomPolicy()$
- 2: V = buildConstantApproximator(0)
- 3: visitedStates = seedStates
- 4: policyId = 1
- 5: runld = 0
- 6: while timeRemaining() do
- 7: executeRun(π , visitedStates)
- 8: runld++

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

9: **if** runId == policyId **then**

Problem: Approach the ball and kick:

- Drive the walk to place the robot in kick position
- Align with goal posts orientation
- Do not touch the ball
- On holonomic robot (HA)
- On almost non holonomic robot (ANHA)

Action space (dimension = 3): Walk is

controlled in acceleration.

Name	Units	min	max	
Forward acc	$\frac{m}{\mathrm{step}^2}$	-0.02	0.02	
Lateral acc	$\frac{m}{\text{step}^2}$	-0.01	0.01	
Angular acc	$\frac{rad}{step^2}$	-0.15	0.15	

State space (dimension = 6):NameUnitsminmax

- Proportional Model: 3 parameters.
- Simple Linear Model: 6 parameters.
- Full Linear Model: 12 parameters.

Parameter learning through black-box (CMA-ES) optimization with 20 learning data sequences:

// Perform roll outs from visited states and
<pre>// fit a regression forest with piecewise</pre>
// constant model approximators.
$V = updateValue(\pi, V, visitedStates)$
// For every visited state: 1-step
// optimization of action.
// Then fit a regression forest with
// piecewise linear model approximators.
$\pi = updatePolicy(V, visitedStates)$
runId = 0
policyId++
end if

22:	end	whil	e
-----	-----	------	---

Results

 In simulation:
 average fitness costs:

 Winner2016
 CMA-ES
 RFPI

 HA
 31.84
 14.90
 11.88

 ANHA
 44.12
 36.18
 15.97

On physical robot: average time in seconds before kicking the ball:

Ball distance	m	0	1
Ball direction	rad	$-\pi$	π
Kick direction	rad	$-\pi$	π
Forward speed	$\frac{m}{\text{step}}$	-0.02	0.0
Lateral speed	$\frac{m}{\text{step}}$	-0.02	0.0
Angular speed	$\frac{rad}{step}$	-0.2	0.2

Problem features:

- Continuous action space
- Continuous state space
- Stochastic displacement model
- Discontinuous reward

Compared Policies

Winner2016: Expert policy used by Rhoban team to win RoboCup 2016. Manually tunned parameters.

CMA-ES: Same as Winner2016 with pa-

Model parameters convergence: (full linear model):

	Winner2016	CMA-ES	RFPI
HA	19.98	13.72	11.45
ANHA	48.14	25.69	18.81

Typical trajectories:

Trajectories of the robot depending on problem and policy

rameters tunned using black-box optimization CMA-ES in simulation.

RFPI: Policy represented as regression forest. Computed using MDP *Random Forest Policy Iteration* (RTFI) solver.

Proposed Method

- 1. Learn displacement model from data
- 2. Solve MDP problem in simulation

3. Apply on real robot

Contributions

- MDP continuous state and action solver (random forests)
- Displacement model learning procedure without external hardware
- Real robot applications
- Approach time improved on holonomous and non holonomous humanoid robot

References

- Hofer, L., and Gimbert, H. Online reinforcement learning for real-time exploration in continuous state and action markov decision processes. In PlanRob2016, ICAPS 2016.
- Rouxel, Q.; Passault, G.; Hofer, L.; N'Guyen, S.; and Ly, O. Learning the odometry on a small humanoid robot. In ICRA 2016.
- Ernst, D.; Geurts, P.; and Wehenkel, L. Tree-Based Batch Mode Reinforcement Learning. In JMLR 2005.