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Abstract. In 2017, Rhoban Football Club reached the first place of the
Kid-Size soccer competition for the second time, and was awarded best
humanoid by the jury1. Capitalizing over the hardware design and soft-
ware basis from previous participations, we improved both robustness
and overall behaviors of our humanoid robots. An interesting milestone
reached is the opportunistic pass ability ; since such an high-level team
play behavior can only work after solving underlying difficulties like hav-
ing a good field localization, robust and reliable detection of vision fea-
tures, a repeatable locomotion with odometry etc. This paper describes
the most meaningful improvements accomplished over this year along
with perspectives of future work.

1 Introduction

During the 2017 competition, Rhoban humanoid robots scored 41 goals. 2 goals
were scored against Rhoban, in both cases by our own robots because of a
technical bug with our localization system that was fixed during the competition.
Indeed, the banishment of magnetic compass2 in 2017 makes it more likely to
observe this kind of failure. We also scored the highest number of points during
the drop-in games, which was a new challenge mixing different teams in the
2017 edition. This was a great opportunity for teams to get ready for real game
situations. In this paper, we present the main modifications we added to both
software and hardware since RoboCup 2016.

2 Hardware

Like every team, Rhoban continuously tries to improve its robots by observing
new problems each year at the RoboCup and trying to fix it for the next year.
In 2017 our new Sigmaban 2 robots are 68 cm tall with Dynamixel MX106 on
the legs, which has proven an efficient and robust compromise between our now

1 https://www.robocuphumanoid.org/hl-2017/results/
2 https://www.robocuphumanoid.org/materials/rules/
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old MX64 based 58 cm tall Sigmaban and the various taller prototypes (90 cm
in 2015, 80 cm in 2016). The mechanical parts of the robots are now entierely
machined and screwed aluminium rather than bent for a better precision. Some
other significant improvement have been made this year and are described below.

2.1 Feet Pressure and Load Cells

Sensing pressures under the feet is one of the specificities of our small humanoid
robots, as explained in the 2016 champion paper [1] and open-source project3.

In 2017, we switched to a more robust, full Wheatstone bridge, 40kg rated,
off the shelf load cells. These load cells are smaller than the previous ones and
are able to handle higher forces because they are made of 3mm thick steel.
To improve the solidity of our robots, and to avoid exposing the load cells and
especially the strain gauges below the feet, we also switched to another hardware
fixation, as depicted on Fig. 1. The load cells are now on the top of the feet
plate and the deformation is transmitted through the plate, using a nylon ring
to reduce frictions.

Strain jauges
measuring 

deformation

Ground force
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Fig. 1: Fixation of load cells on the feet plate for RoboCup 2017. An exaggerated
deformation is represented to understand how the measurement is done.

2.2 Hot-Swap

We designed an hot-swap power board that offers the possibility to switch the
batteries without any transition phase where the robot computer is not powered.
To achieve this, the new battery is plugged before the old one is unplugged and
a single pole, double throw switch is used to change which battery powers the
motors. Two diodes allow the batteries to be simultaneous power sources of the
computer, regardless of the switch position. This system is more efficient than
the hard reset that was needed during the half-time break in previous years.

3 https://github.com/Rhoban/ForceFoot

https://github.com/Rhoban/ForceFoot
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2.3 Open-Sourcing Dynamixel Board

Our Dynamixel board, which includes three parallel USART buses to reduce the
low-level delays that was already introduced in 2016 [1] is now available as an
open-source project4.

2.4 Head Protection

In previous years, 3D-printed camera protections were used. This year, the pro-
tections were cut into the same aluminum used for the robot’s body. This turned
out to be a strong downgrade. When a collision occurs with the head of the robot,
3D-printed protections bend, effectively absorbing a portion of the impact. With
the aluminum protections, most of the impact is directly transmitted to the mo-
tors’ shafts. Rotational offsets up to 6 degrees were commonly observed on the
head pitch servomotors after a fall and having the head’s shaft completely sev-
ered became a common issue.

3 Motion

3.1 Walk Engine

From 2014 to 2016, all of our robots were relying on the open-source IKWalk
engine presented in [15]. For this 2017 edition of the RoboCup competition, this
walk engine has been improved to a new version, QuinticWalk5, leading to a
smoother and stabler motion. This new walk engine follows the same principles
as the old one but with many details updated.

As introduced by [2], the movement is open loop and does not use any ZMP
criterion or dynamics modeling. The shapes of target trajectories are built geo-
metrically from a set of parameters in the Cartesian space. All target joint posi-
tions are then computed through an inverse kinematics of the legs of the robot.
These parameters are manually tuned on the physical humanoid robot (trials
and errors) until a fast and balanced motion is achieved. The main changes are
the following:

– The trajectories are represented by using 5th order polynomial splines. This
splines allow for continuous accelerations. Hence, the computed theoretical
torques generated by the motion at each joint are also continuous, as well as
the ZMP trajectory on the ground.

– Acceleration continuity is ensured during omnidirectional walk as well as
parameter update (in a way similar as done in [9]).

4 https://github.com/Rhoban/DXLBoard
5 Source code available at: https://github.com/RhobanProject/Model/tree/

master/QuinticWalk

https://github.com/Rhoban/DXLBoard
https://github.com/RhobanProject/Model/tree/master/QuinticWalk
https://github.com/RhobanProject/Model/tree/master/QuinticWalk
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– Instead of expressing the target trajectories with respect to the moving frame
of the trunk, all Cartesian positions and orientations (12 degrees of freedom)
are expressed with respect to the support foot, fixed on the ground. The
overall motion is easier to define but the discontinuity of the representation
has to be handle at the support swap.

– The handling of the double support phase is implemented. A low frequency
and stable gait can be achieved with the right set of parameter values.

– On the walk startup, the trunk begin to oscillate during an half cycle before
the legs in order to initialize the dynamics of weight swigging of the robot.

As a result, the displacement of the robot is qualitatively far stabler, espe-
cially on our bigger robots. For example, the lateral steps do not trigger con-
stantly the stabilization module anymore (see [12]) which was required to prevent
the robot from falling.

However, the effects of the Runge phenomenon can be observed on some parts
of the trajectories. The current implementation could be improved by replacing
the polynomial splines by the optimal bang-bang jerk control developed by [4].

4 Vision

Our main vision system has been completely changed in 2017. The method
we used before was mainly based on multiple hand-tailored OpenCV filtering,
but for our purpose, this ”standard” method has reached its limits in terms
of complexity, robustness and maintainability. The new vision pipeline is much
simpler and requires much less hand tuning. Moreover, it also appeared to be
quite robust to the environments changes in luminosity and color.

Regions of interest (ROI) for the ball and the goal posts are extracted from
the full image, using the robot’s state (ground plane projection on the camera
plane) and a kernel convolution on an Integral Image filter. These ROIs are then
classified by a Convolutional Neural Network, see Fig. 2.

4.1 Identification of ROI by Integral Images

The first step of ball and goal post detection is to identify ROI which are likely
to contain them. The ROI are squares and their size is computed according to
the robot model. A ROI is supposed to measure twice the size of the ball, due
to perspectives, the size might vary inside the image.

The score of a ROI is computed based on white and green densities inside
the region. Local densities can be obtained at a low computational cost based
on integral images, see [5]. For the ball, the density of white at the center of the
region should be higher than the average density in the whole region, on the other
hand, the density of green in the center of region should be lower than in the
whole region. The same pattern applies for goal post detection, but the region
which has to contain a high density of white is the top center of the region. A
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(a) Score of ROI for goal posts (b) Result of goal posts detection

Fig. 2: Example of ball and goal detection

visualization of the score function is shown for the goal posts in Fig. 2a. Positive
scores are shown in red and negative scores in black. Note that if a region of
interest should exceed the margin of the image, then its score is zero.

In order to ensure a satisfying frame rate, a maximum of 4 ROI per frame are
classified by each neural network. Selection is based on scores and intersection
of ROI is forbidden.

4.2 Classification

Convolutional Neural Networks (ConvNet) have become the state of the art
methods in various computer vision tasks [10]. Several off-the-shelf very powerful
architectures are available such as [13,14] but unfortunately none were usable
in the very limited embedded computers of our robots. We thus designed our
custom ConvNet using a c++ library with no external dependencies 6. The aim
of the approach was to design a minimal architecture able to classify ball and
goal post patches with at least 95% accuracy.

After some hand-tuning we obtained a quite small network (cf. Fig. 3) able
to classify small 16× 16× 3 patches with good results (cf. Table 1).

nb training/validation Learning rate Accuracy

Ball 7400/1500 0.013 96.8%
Posts 13500/2500 0.0425 96.92%

Table 1

This architecture was used both for ball and goal post classification, with the
small difference that the goal network has only 16 feature maps.

6 https://github.com/tiny-dnn/tiny-dnn

https://github.com/tiny-dnn/tiny-dnn
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Fig. 3: Architecture of the reduced ConvNet used for ball classification in the
RoboCup 2017

4.3 Logging and Image Tagging

One key functionality to this system is the ability to quickly obtain a large
quantity of labeled data. To do so, patches extracted from ROIs were uploaded
on an online tagging tool7 accessible to the public. Tagging was made simple with
a responsive ”Google ReCaptcha” style interface. This tool was used by several
supporters from outside the team and allowed to get thousands of labeled patches
in a matter of a few hours, thus freeing precious time to the team members. In
order to ensure the quality of the tagging from non expert users, a consensus
based approach on the label was implemented (a patch is considered correctly
labeled if it was tagged more than N times and if more than X% of the tag
were consistent). Moreover, new users were first required to correctly label a
set of images previously labeled by the team members. To date, approximately
10000 patches of of balls and 4000 of goal posts were positively labeled. Finally,
a slight gamification of the system was added through a leaderboard in order
to motivate users. The project is open source8 and the data are available once
registered.

5 Strategy

Last year, our strategy to kick the ball was simply to face the center of the goals.
However, this is not a satisfying solution for several reasons. For instance, when
the ball is located on the corners of the field, it is better to center it before trying
to score a goal. Moreover, depending on the ball location, the tolerance on the
orientation is not the same, it is more important to face exactly the goals when
we are near than if we are in the other half field.

5.1 Kick Model

In order to be able to optimize the kick decisions, we started by establishing a
model of the noise on the kick based on real-world data. We used a simple model

7 http://rhoban.com/tagger/
8 https://www.github.com/rhoban/tagger

http://rhoban.com/tagger/
https://www.github.com/rhoban/tagger
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where the kick distance r and the kick direction θ are sampled from Gaussian
distributions.

r ∼ N(µr, σr)

θ ∼ N(µθ, σθ)
(1)

5.2 Value Iteration for the Kick Strategy

Choosing the decision and the type of kick is modeled as a Markov decision
problem, MDP for short.

The current state s ∈ S can be any position of the ball on the field using
discrete grid (for instance every 20 cm), or also out or goal if the ball goes out
of the field or scores a goal. The possible actions a ∈ A are tuples (k, θ) of the
selected kick k (forward kick or lateral kick) and kick orientations θ, which are
also discrete (for instance every 5 degrees).

We can then build a model of the stochastic transition function, using random
samples, as depicted on Fig. 4. This model is actually the estimation of P (s′|s, a),
i.e the probability of reaching the state s′ knowing that we were in the state s
and we applied the action a.

Fig. 4: The transition function is approximated using random sampling for each
possible state s and action a.

We then use the value iteration algorithm [3] with the following iterative
method:

V (s) = maxa
[∑

s′∈s P (s′|s, a)(R(s, s′) + V (s′))
]

V (goal) = 0
V (out) = −1000

(2)



8 Rhoban Football Club

Where R(s, s′) is the reward for getting in state s′ from state s. In our case,
we choose the reward to be the negative number of seconds required to walk
from the position of state s to the state s′. Thus, the value of V (s) can here be
understood as the (negative) time required to score a goal for the better possible
sequence of kicks.

We update the values of each state iteratively until one complete iteration
did not changed the value of any state.

The action a that maximizes V (s) for each s ∈ S is then the kick and
orientation that should be used depending on where the ball is located on the
field. Moreover, we can also select several actions that produce similar values,
using a tolerance threshold. This is an interesting information since it can be
used to know how accurate we need to be when trying to approach the ball.
Fig. 5 shows an example of result obtained.
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Fig. 5: The values of V (s) (using color gradient) on the field for the better kicks
(using a tolerance) for each position on the field

Approaching the kick problem through MDP allowed us to provide satisfying
policies without requiring heavy hand-tuning of parameters. However, in order to
take into account the position of the other robots into the kick decision process,
it would be necessary to add dimensions to the problem, thus leading to the
curse of dimensionality. We expect to use approach based on continuous state
and action MDP to improve further the quality of our kick decision policies. This
approach has already been successful for reducing the time require to reach a
satisfying position for kicking [8].

5.3 Team Play

All robots share some information about their state, including their position
estimation, the estimation of where the ball is on the field, their game state (for
instance if they are playing, fallen or penalized).
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A kicker score, which is an estimation of the time that would be required for
the robot to reach the ball and the value V (s) depending on the ball position
is also shared to choose which robot will handle the ball and kick it. This robot
shares the estimation of the position of the ball after its next shoot, using the
mean µ of the kick model. We achieved opportunistic passes this way. Indeed,
the robots were trying to walk where the ball would be in the future, after the
next kick of the robot currently handling the ball.

In the future, this might be achieved in a better way, taking in account the
positions of other robots to adjust the kick. From a technical point of view, we are
also considering electing a virtual team ”captain”, that would take the decision
for the whole strategy, which would considerably simplify the organization of
team play.

5.4 Camera Model Calibration

In the current state of the competition, robots still fall frequently. The defor-
mation that is caused on the mechanical parts has been a recurrent issue since
the geometric model of the robot is constantly used in the vision pipeline. For
example to compute the Cartesian egocentric distance between the robot and
the detected ball on the ground. A dismountable, low cost calibration setup was
designed specifically for calibration. The markers on the setup are detected with
an off-the-shelf algorithm [6] by the robot whose cleats are used to ensure an
accurate position on the ground. A dance-like motion was implemented so that
the tags are seen from a multitude of perspectives.

A hundred samples, containing the joint positions of the robot and the mea-
sured coordinates of the tags in pixel space, are downloaded from the robot.
Since the actual positions of the tags are known, an error can be calculated for
each tag of each measure using the direct kinematics of the robot.

A black box optimization algorithm [7] is used to minimize a function of the
errors, the inputs of the optimization being angular offsets in the camera joint
(pitch, roll, yaw), in the neck joint (roll, yaw), in the IMU joint (pitch, roll) and
a parameter that quantifies the measure noise in pixel space. 25% of the samples
are used for cross-validation.

During the 2017 RoboCup, almost every robot was calibrated between matches.
Offsets of more than 3 degrees were often found in-between.

6 Development and Workflow

6.1 Build System and Architecture

One of the main issue about software architecture is managing the dependencies
with third party libraries, and also with our own different packages. We switched
to catkin, which is a build system used by the ROS community [11]. We also
developed custom scripts to be able to manage all our many repositories, which
helps us to install and update automatically all the dependencies when installing
the development environment on a new system.
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Since the robots have the same architecture (x86 64 bits) than our computers,
we can deploy directly the binaries on it without actually cross-compilation.
Some flags are just provided to avoid using extended instructions like SSE4
unavailable on the robots.

In the future, we plan to switch to Intel NUC7i5BNK as main computer,
which would provide better overall CPU performances.

6.2 Behavior Viewer

A considerable portion of our strategy is implemented using finite state machine
representations. Even if this is a convenient tool to represent the behaviour of
the robot, increasing the number of possible states and transitions makes it
quadratically harder to validate all possible game scenarios. For instance, free
kicks or yellow and red cards that were introduced in the 2017 rules made these
states machines more complex.

In order to test our strategy, to reproduce a game situation and check how the
robot behaves, a simulated mode has been implemented in our software. From a
kinematics simulation (no physics), robot’s state and environment are faked. We
designed a tool called the Behavior Viewer (Fig. 6) which is used to setup and
easily reproduce any wanted scenario by mocking the robot position, the ball
and also some obstacles. Note that the exact same behaviour code is running
in the fake environment and in our robots during actual games, including the
referee instructions listening.

Fig. 6: An example of situation in the Behavior Viewer involving a robot playing
with the ball, obstacles, trajectory and vision cone.
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6.3 Monitoring and Replay

In addition of previously explained off-line testing process, it is also important
to be able to monitor what is happening during the game and to investigate on
the logs. Our online monitoring system, which captures the UDP packets that
are used by our robots for strategy communication and produces a visualization,
now also captures images from a webcam and logs everything so that we can
replay a full game step by step. We can also synchronize the robot timestamped
log files to have even more accurate data. Fig. 7 is an example of the result.

This system was extensively used for testing games and produces better un-
biased opinions about what is needed to be fixed or improved.

Fig. 7: Monitoring both the state of our robots and the images with full replay
ability after the games

7 Conclusion

We now have full monitoring logs from all of the RoboCup games of this year.
We plan to use them as an objective tool to define what are the priorities in
order to improve the game on our robots.

An early version of other robots detection and obstacle avoidance was imple-
mented. However this detection is still difficult, mainly because opponent robot
appearances are unknown and building a training dataset is hard during the
competition. Sharing images among teams maybe one of the possible solutions.

Tackling this problem would really improve the quality of the games. First
because we would like the robots to be able to avoid from colliding each other in
the future, but also use this information to compute more sophisticated strategy.
Free kicks are also a good rule-tool for the referees to encourage detecting robots
by penalizing the robots colliding each other.
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Automatic generation and detection of highly reliable fiducial markers under oc-
clusion. Pattern Recognition 47(6), 2280–2292 (2014)

7. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution
strategies. Evolutionary computation 9(2), 159–195 (2001)

8. Hofer, L., Rouxel, Q.: An operational method toward efficient walk control policies
for humanoid robots. In: Proceedings of the Twenty-Seventh International Confer-
ence on Automated Planning and Scheduling, ICAPS 2017, Pittsburgh, Pennsyl-
vania, USA, June 18-23, 2017. pp. 489–497 (2017)

9. Hugel, V., Jouandeau, N.: Walking patterns for real time path planning simula-
tion of humanoids. In: 2012 IEEE International Symposium on Robot and Human
Interactive Communication (RO-MAN 2012). pp. 424–430. RO-MAN, IEEE (2012)

10. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Advances in neural information processing systems.
pp. 1097–1105 (2012)

11. O’Kane, J.M.: A gentle introduction to ros (2014)
12. Passault, G., Rouxel, Q., Hofer, L., N’Guyen, S., Ly, O.: Low-cost force sensors for

small size humanoid robot (video contribution). In: 2015 IEEE-RAS International
Conference on Humanoid Robots (Humanoids 2015). pp. 1148–1148. IEEE (2015),
https://youtu.be/_d7Phe0qois

13. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: Unified,
real-time object detection. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. pp. 779–788 (2016)

14. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detec-
tion with region proposal networks. In: Advances in neural information processing
systems. pp. 91–99 (2015)

15. Rouxel, Q., Passault, G., Hofer, L., N’Guyen, S., Ly, O.: Rhoban hardware and
software open source contributions for robocup humanoids. In: Proceedings of 10th
Workshop on Humanoid Soccer Robots at IEEE-RAS Int. Conference on Humanoid
Robots (2015)

https://youtu.be/_d7Phe0qois

	Rhoban Football Club: RoboCup Humanoid Kid-Size 2017 Champion Team Paper

